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Abstract

One of the consequences in analyzing biological data from noisy sources, such as human subjects, 

is the sheer variability of experimentally irrelevant factors that cannot be controlled for. This holds 

true especially in metabolomics, the global study of small molecules in a particular system. While 

metabolomics can offer deep quantitative insight into the metabolome via easy-to-acquire biofluid 

samples such as urine and blood, the aforementioned confounding factors can easily overwhelm 

attempts to extract relevant information. This can mar potentially crucial applications such as 

biomarker discovery. As such, a new algorithm, called Selective Paired Ion Contrast (SPICA), has 

been developed with the intent of extracting potentially biologically relevant information from the 

noisiest of metabolomic datasets. The basic idea of SPICA is built upon redefining the 

fundamental unit of statistical analysis. Whereas the vast majority of algorithms analyze 

metabolomics data on a single-ion basis, SPICA relies on analyzing ion-pairs. A standard 

metabolomic data set is reinterpreted by exhaustively considering all possible ion-pair 

combinations. Statistical comparisons between sample groups are made only by analyzing the 

differences in these pairs, which may be crucial in situations where no single metabolite can be 

used for normalization. With SPICA, human urine data sets from patients undergoing total body 

irradiation (TBI), and from a colorectal cancer (CRC) relapse study were analyzed in a statistically 

rigorous manner not possible with conventional methods. In the TBI study, 3530 statistically 

significant ion-pairs were identified, from which numerous putative radiation specific metabolite-

pair biomarkers that mapped to potentially perturbed metabolic pathways were elucidated. In the 

CRC study, SPICA identified 6461 statistically significant ion-pairs, several of which putatively 

mapped to folic acid biosynthesis, a key pathway in colorectal cancer. Utilizing support vector 

machines (SVMs), SPICA was also able to unequivocally outperform binary classifiers built from 

classical single-ion feature based SVMs.
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Introduction

The rise of metabolomics as a primary “−omics” platform in high throughput quantitative 

biology has enabled the exploration of biological systems at an unprecedented level of 

insight. With the capability to quantify thousands of small molecule signatures in a 

particular system, liquid chromatography (LC) coupled with mass spectrometry (MS) based 

untargeted metabolomics is a powerful tool for exploring and characterizing metabolic 

processes, as well as biomarker discovery.1 However, there are both positive and negative 

aspects to the platform that make data analysis unique challenge.

The sensitivity and flexibility of the metabolomics platform vastly increases the range of 

sample types and sources from which samples can be acquired for analysis. Sample types 

such as urine, blood, cell lysates, feces, and saliva can easily be fed into the metabolomics 

workflow. Furthermore, biofluids, such as urine, can be sampled from mice and other small 

animal models at multiple time points without compromising survivability, unlike multiple 

blood draws. However, this flexibility can also introduce a myriad of confounding factors 

that were never an issue for platforms with more restrictive sample requirements, such as 

microarray based transcriptomics. While ostensibly an ideal sample type for analysis via 

metabolomics, urine samples from experiments utilizing animal models in ideal 

environmental and dietary conditions will result in metabolomics data that, by the standards 

of other −omics platforms, exhibit an exceptionally high degree of variability and 

fluctuation.2 This is in large part due to the high sensitivity of the urine metabolome to 

virtually any stimulus, especially when analyzed via metabolomics. This problem is 

exacerbated when the experiment involves human subjects, where factors such as diet, 

environment, genotype, age, and sex cannot always be controlled for, especially when 

sample sizes are low.

These problems are compounded by several confounding characteristics that are inherent 

idiosyncrasies of metabolomics data. Raw LC-MS metabolomics data, in the form of 

chromatograms, must first undergo a pre-processing stage in which the chromatographic 

peaks are identified and selected in order to produce the more familiar postprocessed high 

dimensional quantitative data resembling outputs from other −omics platforms. A large part 

of the pre-processing stage involves mitigating issues such as retention time drift, proper 

peak alignment across multiple samples, and correcting for external environmental variables 

that may affect the results, such as room temperature fluctuations.3 These factors can 

certainly affect the final postprocessed output, and add to the overall difficulty of analyzing 

metabolomics data. The postprocessed data itself poses a serious challenge for 

bioinformaticians due to a number of peculiarities. Variables in the data often have very 

different variances when compared to one another, making many classical biostatistical 

methods invalid due to their inherent assumption of equivariance. Perhaps the defining 

attribute of metabolomics data is the “missing” data issue, which is typically defined as a 

zero value in the relative abundance for a given ion.4 While missing data is not a new 

problem, it is the magnitude and inexplicable pattern of this “missingness” that introduces 

new problems during analysis. Many mathematical procedures and operations simply fail 

during these circumstances, and standard solutions, such as value imputation, become 

questionable when the numbers of values that need to be imputed comprise such a large 
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fraction of the total data set. Taken together, these factors pose as serious obstacles when 

attempting to normalize a data set.

Nonetheless, the considerable potential of the metabolomics platform as a tool for non-

hypothesis driven research and biomarker discovery necessitates the development of 

specialized algorithms that are robust enough to extract potentially biologically relevant 

information from its noisy and idiosyncratic data sets. The current repertoire of techniques 

and algorithms for analyzing these data rely on classical univariate and multivariate 

procedures, such as standard statistical tests, principal component analysis (PCA), and 

orthogonal projections to least squares (OPLS). Workflows that have been developed for 

handling metabolomics data sets, including MetaboAnalyst,5 as well as MetaboLyzer,6 

which our group recently developed, rely on these standard techniques, which are not 

explicitly designed for the data, and may not fully exploit its unique characteristics. As such, 

a new algorithm, called Selective Paired Ion Contrast Analysis (SPICA), has been developed 

for the express purpose of analyzing metabolomics data, taking into full account its 

advantages and shortcomings, so that potentially biologically relevant information can be 

extracted even from the most inscrutable of data sets.

SPICA is built upon utilizing pairs of ions as the fundamental unit of statistical analysis, 

rather than individual ions. All possible ion-pair combinations are first generated from the 

ion features in a dichotomous data set. Statistically significant differentiating ion-pair 

features are then identified when comparing data from the control versus treated sample 

groups. By conducting analysis in this pairwise fashion, numerous potential normalization 

issues are mitigated, as well as exposing possible latent structures in the data that would 

otherwise be missed when only analyzing the data in the traditional single-ion fashion. 

Biological interpretation of ion-pair features is conducted by augmenting traditional 

metabolic pathway analysis techniques for this new paradigm. Analysis was conducted on a 

radiation metabolomics study that analyzed urine samples collected from cancer patients 

before and after undergoing total body irradiation (TBI), as well as a separate study that 

compared differences between urine samples from colorectal cancer (CRC) patients who 

eventually relapsed versus those who did not. In both cases SPICA was able to identify 

numerous statistically significant ion-pair features that putatively mapped to metabolic 

pathways directly linked to the stressors. When adapted into a support vector machine 

(SVM) based binary classifier, SPICA was able to unequivocally outperform its single-ion 

based counterpart.

Methods and Tools

The prototype code for the SPICA algorithm and all supporting scripts were written in 

Python. The code implementation relies upon numerous open source libraries and tools, 

namely SciPy,7 RPy2,8 Matplotlib,9 and PyOpenCL.10 Numerous statistical tests 

implemented in SciPy were utilized in the SPICA code. Via RPy2, many functions and 

libraries in the R statistical computing environment11 were also used, namely Kernlab12 and 

ROCR.13 Matplotlib was utilized for its graphing capabilities. OpenCL,14 via PyOpenCL, 

was instrumental in making several components of SPICA feasible by reducing calculation 

times. SPICA is open source and is freely available at https://sites.google.com/a/
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georgetown.edu/fornace-lab-informatics/home/spica along with detailed installation 

instructions (Supplement 2).

All urine samples in both the TBI and CRC data sets were stored at −80 °C and analyzed 

utilizing Ultra Performance Liquid Chromatography coupled to time-of-flight mass 

spectrometry, utilizing a Waters Corporation QTOF Premier. Samples were run in both 

positive and negative ionization modes. The TBI study chromatograms were preprocessed 

with MarkerLynx (Waters, Inc.), while the CRC study chromatograms were preprocessed 

with XCMS.3

Initial Data Reprocessing

SPICA’s novel reinterpretation and reorganization of a standard dichotomous metabolomic 

data set (e.g. control vs. treated) begins with an initial data reprocessing stage (illustrated in 

Figure 1). This step precedes the ion-pair reinterpretation stage, and functions as an initial 

filtering and standardization step. These procedures are necessary for reducing the intrinsic 

variability and noise found in metabolomic data, and serve in laying a foundation for ion-

pair formation. While most of these procedures are standard, one novel component involves 

merging the positive and negative mode data sets, which are generated from the positive and 

negative electrospray ionization modes used during LC-MS based metabolomics data 

acquisition, into a unified data frame. This maximizes the number of derived ion-pairs, and 

eliminates the unnecessary dichotomization of the overall data. The initial preprocessing 

stage is multistep, and involves data-wide transformation, normalization, and filtering 

procedures based on both statistical and putative biochemical properties of the ions.

The reprocessing workflow begins with filtering out all ions in both ionization modes that 

are missing in a user-defined percentage (a zeros threshold Zthr) of the samples in at least 

one of the data subsets (e.g. control or treatment). This categorizes the ions as either partial-

presence, wherein the ions appear above the Zthr in only one set, or complete-presence, 

wherein the ions appear above the Zthr in both sets. Data for both the complete- and partial-

presence ions is then log transformed (base e) and Gaussian normalized, which involves 

performing a statistical Z standardization, wherein the estimated mean and standard 

deviation parameters used during standardization are estimated on a per-sample basis, and 

only utilizing the complete-presence data for estimation. Both the zeros threshold filtering 

and the Gaussian normalization procedures are discussed at length in our previous work.6 

These procedures are executed independently for the positive and negative mode data sets, 

meaning that the Z standardization parameters are derived on a per-sample as well as a per-

mode basis. The data are then simply concatenated into a unified set comprising data from 

both positive and negative ions, which, to reiterate, have been transformed and normalized 

based on their originating ionization mode data set. As a final filtering step, ions may be 

excluded based on their assigned putative biochemical identities via integration of the Kyoto 

Encyclopedia of Genes and Genomes (KEGG),15 the Human Metabolome Database 

(HMDB),16 and the BioCyc small molecule databases.17 Putative identity assignment is 

discussed in our previous work.6 The prototype SPICA code implements both a porous and 

restrictive rule set for filtering, and is detailed in Supplement 1.
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Ion-Pair Reinterpretation

The fundamental concept behind SPICA is the novel reinterpretation and translation of 

standard metabolomics data into a paired feature paradigm. These paired features are 

generated by exhaustively generating every possible ion-pair combination in a standard 

metabolomic data set. For instance, if there are 1,000 ions in a data set, then 499,500 ion-

pair features will be generated. All subsequent analysis is conducted only through the meta-

data generated from this process. The reinterpreted data for these ion-pairs are constructed 

as either continuous or discrete features, and undergo a rigorous statistical filtering 

procedure that evaluates for missingness, normality, and outliers. While continuous features 

intrinsically contain more information, discrete features are by nature more statistically 

robust, allowing for information to be extracted from otherwise untenable sources. It is this 

heterogeneous model (illustrated in Figure 2), utilizing both continuous and discrete 

features, which allows SPICA to fully exploit the advantages of parametric and non-

parametric statistics.

Initially, the complete-presence ion data from the transnormalized data set produced in the 

Initial Data Reprocessing step is utilized to construct the continuous ion-pair features. The 

continuous ion-pair feature (δionA|ionB) for any two complete-presence ions (ionA, ionB) in a 

given sample (X) is calculated by the signed arithmetic difference between their associated 

transnormalized abundance values (AbionA,X, AbionB,X):

If either abundance value is missing in the sample, then δionA|ionB,X cannot be calculated, 

and is considered missing. The delta values for all complete-presence ion-pair combinations 

are initially calculated for all samples in both data subsets (e.g. control and treated), and then 

filtered based on missingness, utilizing the same user-defined zeros threshold Zthr in the 

previous reprocessing procedure. This is necessary because any two complete-presence ions 

(which by definition have non-missing abundance values in at least Zthr percent of the 

samples in both data subsets) can easily produce an ion-pair feature that has a missingness 

that is below Zthr due to the computational requirement that both ions must be non-missing 

within the same sample. Only ion-pair features that are above the Zthr are kept, while the 

remaining features are separated for possible discretization in the next phase. The 

continuous ion-pair feature set is further reduced via outlier filtering. This process involves 

removing features whose constituent data loss after outlier removal (via non-parametric 1.5 

interquartile range filtering) exceeds a user-defined percentage (Lthr) in either subset. 

Features that are removed at this stage are again kept for possible discretization. Finally, the 

remaining features may be subjected to an omnibus test for normality, depending on whether 

the Welch’s t-test for statistical significance will be used during the Data Comparison step. 

If this option is selected, features will be further reduced (and kept for eventual 

discretization) based on the outcome of the omnibus test (and the associated p-value 

threshold). All remaining continuous ion-pair features are considered fit for analysis in the 

Data Comparison step.
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Discrete ion-pair features are constructed from both the partial- and complete-presence ion 

subsets, as well as from the continuous ion-pair features that were filtered out in the 

previous phase. Discrete ion-pairs are constructed by pairing partial-presence ions with other 

partial-presence ions, but also by pairing with complete-presence ions as well. The discrete 

ion-pair feature (βionA|ionB) for any two ions (ionA, ionB) in a given sample (X) is a binary 

variable determined by which associated transnormalized abundance value (AbionA,X, 

AbionB,X) is greater:

This equation also serves to discretize the continuous ion-pair features discarded from the 

previous phase. Missing abundance values are given a value of negative infinity (−∞), thus 

βionA|ionB,X can still be calculated if either abundances are missing, but cannot be calculated 

if both are. Thus, βionA|ionB,X is only considered missing if both abundance values are also 

missing, or in the extremely rare case where the abundance values are identical. Discrete 

ion-pair feature missingness serves as the basis for filtering, wherein missing βionA|ionB,X 

values are considered outliers, and features are removed based on whether the percentage of 

data loss exceeds the user-defined Lthr cutoff in either data subset. All remaining discrete 

ion-pair features are kept for analysis in the Data Comparison step. Overall, this discrete 

ion-pair feature model may serve as a tenable solution for extracting useful information from 

“missing” portions of metabolomic data that are otherwise unused.

Data Comparison

The statistical procedure for comparing SPICA generated ion-pair features in two sample 

subsets follows a workflow (outlined in Supplemental Figure 1) utilizing classical 

biostatistical techniques as well as newer computational approaches designed for high 

throughput −omics data. The primary objective of this procedure is the identification of 

statistically significant ion-pair features that differentiate between the two sample subsets in 

a typical dichotomous data set. The workflow follows a standard procedure, which 

encompasses initial statistical testing, followed by multiple testing correction (MTC), and 

finally data visualization. However, the heterogeneous nature of the ion-pair features 

necessitates using old tools in new ways via the development of a modified principal 

component analysis (PCA) based procedure known as heterogeneous PCA for visualizing 

statistically significant ion-pair data.

Identifying statistically significant ion-pairs involves initial statistical testing followed by 

multiple testing corrections (MTC) procedures to control for the false-positive rate (Type I 

error). Continuous ion-pair features are evaluated for statistical significance either by the 

parametric Welch’s t-test, or the non-parametric Kolmogorov-Smirnov (K-S) test. Discrete 

ion-pair features are evaluated by the Fisher’s exact test. MTC is then conducted separately 

for continuous and discrete features. Either a Monte Carlo implementation of Westfall and 

Young’s maxT step-down permutation resampling procedure,18 or a standard false 

discovery rate (FDR) procedure19 is used for MTC in both feature types. The permutation 
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resampling procedure is widely used in both genome wide association studies20 and gene 

expression data analysis,21 which place high emphasis on strongly controlling for Type I 

errors. However, this procedure may prove too conservative in some cases, producing far 

fewer results than desired, thus necessitating the use of an FDR based procedure. The 

prototype code implements a simple and widely used FDR step-up p-value adjustment 

method, which results in less stringent Type I error control, but greater statistical power.22

Data visualization is a common means by which statistically significant features in high-

throughput biological data are qualitatively evaluated, with PCA being the most prevalent 

procedure in metabolomics. Heterogeneous PCA, a new data visualization procedure based 

on PCA, was developed in order to accommodate both continuous and discrete ion-pair 

features during analysis. Standard PCA procedures are only able to analyze continuous 

features. An alternative procedure, known as polychoric PCA, is able to incorporate both 

continuous as well as discrete features by constructing a pseudo-correlation matrix wherein 

the polychoric correlation (rpolychoric) is used between two discrete features, the polyserial 

correlation (rpolychoric) is used between a discrete and a continuous feature, and finally the 

traditional Pearson’s correlation (rpearson) is used between two continuous features.23 

However, using a correlation matrix for PCA does not allow for the contribution of variables 

to be differentially emphasized during analysis (i.e. weighting), thus a new procedure, called 

heterogeneous PCA, was developed. Heterogeneous PCA builds on polychoric PCA, and 

constructs a weighted pseudo-correlation matrix (outlined in detail in Supplement 1), which 

maximizes the usage of information available in both the discrete and continuous ion-pair 

features. Heterogeneous PCA is utilized for data visualization, as well as for dimensionality 

reduction during SVM based classification (detailed in Supplement 1).

Putative Metabolic Pathway Analysis

For the biologist, perhaps the most tangible way in which to examine the statistically 

significant ion-pair features identified in the Data Comparison step is by examining the 

metabolic pathways that are putatively associated with these features. As mentioned in the 

Initial Data Reprocessing step, the constituent ions of all ion-pair features are examined for 

any putative matches to biologically relevant small molecules and any associated metabolic 

pathways via KEGG and BioCyc (only KEGG results shown during analysis for brevity). 

With this information, a novel approach to conducting pathway analysis was developed, 

utilizing a conventional pathway analysis procedure25 that has been augmented for ion-pair 

features. By necessity, only ion-pair features in which both constituent ions possess a 

putative identification and associated KEGG or BioCyc pathway are utilized. It is important 

to emphasize that all results are putative in nature, as they rely on putative ion 

identifications, and must eventually be verified via tandem mass spectrometry. Furthermore, 

more than one identity can potentially be assigned to an ion, and thus mapped to more than 

one pathway. In these cases, all identities (and the resulting combination of pairs) are 

separately considered during analysis. Analysis is separated into two stages (outlined in 

Figure 3), with the first stage focusing on ion-pair features in which both constituent ions 

putatively identify to the same pathway, and the second stage focusing on ion-pair features 

in which both ions identify to two different pathways.
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The first stage of metabolic pathway analysis focuses on the subset of ion-pair features that 

map to only one pathway per feature (referred to as single-mapped features). Conceptually, 

these single-mapped features are the easiest to interpret from a biological standpoint, 

because a statistically significant ion-pair feature in which both constituent ions putatively 

identify to the same pathway implies that this pathway has been somehow perturbed. 

Quantifying the degree of the perturbation of a pathway relies on identifying all single 

mapped features, both statistically significant and non-significant, that map to it, and 

tabulating the fraction of this total mapped ion-pair set that is significant. This is essentially 

the classical approach to pathway analysis, as conducted in gene expression analysis. In 

following this methodology, SPICA utilizes a hypergeometric test for statistical significance 

in order to assign p-values to perturbed metabolic pathways, and conducts MTC via 

application of the false discovery rate (FDR) method. In doing so, perturbed pathways can 

then be ranked by p-value. Pathways possessing corrected p-values lower than a user-

defined threshold (αpathway) can be interpreted as being perturbed beyond the statistical 

expectation, with respect to all other perturbed pathways analyzed. However, it is important 

to emphasize that a perturbed pathway with a p-value above the threshold does not imply 

that it is not potentially biologically relevant, only that it is not perturbed more than what is 

statistically expected. This procedure is conducted separately for both KEGG and BioCyc 

pathways, and the results are displayed in a simple bar graph.

The second stage of metabolic pathway analysis examines the ion-pair features that map to 

two different pathways, one for each constituent ion (referred to as dual-mapped features). 

The difficulty in biologically interpreting statistically significant dual-mapped features lies 

in the inability to identify which metabolic pathway has been perturbed, or if indeed both 

have been perturbed. The problem is the lack of a reference point, which is not an issue for 

single-mapped features. The approach to this problem involves grouping and analyzing 

dual-mapped features on a per-pathway basis. For a given metabolic pathway, all dual-

mapped features in which either constituent ion maps to the pathway are aggregated. From 

this, the fraction of features that are statistically significant are then tabulated, from which a 

p-value quantifying the statistical significance of the perturbation of the pathway can be 

calculated using the hypergeometric test. Once all p-values have been calculated and 

aggregated for all pathways, MTC is conducted via FDR. These steps mirror the analysis of 

single-mapped features, and essentially provide the same results pertaining to pathway 

perturbation quantification. However, the nature of dual-mapped feature data allows for 

additional analysis to be conducted beyond basic pathway perturbation assessment. When 

dual-mapped features are instead grouped on a double pathway basis and then subsequently 

analyzed via FDR corrected hypergeometric testing, a distance matrix can be constructed 

based on this data. For two metabolic pathways (X, Y), elements (dX,Y) in the distance matrix 

are assigned depending on the corrected hypergeometric p-value (pX,Y) and the user defined 

p-value threshold (αpathway):
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This distance matrix can then be analyzed with the classical multidimensional scaling 

(MDS) algorithm to create a 3-dimensional visualization, which maps each pathway as a 

point in Euclidean space. The arrangement of the pathways in the MDS plot is representative 

of their absolute perturbation as well as their perturbation in relation to one another. The 

farther a pathway is from the center of the MDS plot, the greater degree of its perturbation, 

but even more importantly, the spatial relationship between pathways is indicative of their 

differential perturbation with respect to one another. This gives the investigator a more 

complete depiction of the multifaceted interactions between pathways, instead of looking at 

pathway perturbation on a one-dimensional level.

Analysis of Total Body Irradiation Data

The challenges in studying the effects of radiation exposure in biological systems primarily 

stem from the intrinsically stochastic nature of the stressor.25 These problems can be 

compounded in high-sensitivity platforms such as metabolomics. SPICA was used to 

analyze a data set from a previously reported radiobiology study,26 which consisted of urine 

samples collected from 36 patients undergoing total body irradiation (TBI) collected before, 

and 6 hours post-exposure to a single dose of 125 cGy of radiation. A zeros threshold (Zthr) 

of 0.50 was used, on the qualitative basis that in the worst-case scenario, a continuous ion-

pair feature would be present, and therefore applicable for at least 50% of the samples in 

both groups. A practical outlier removal threshold (Lthr) of 0.9 was utilized, which excludes 

a feature if more than 90% of the data is found to be an outlier via 1.5 IQR filtering. A 

porous biological filtering rule set was also utilized for removing irrelevant ions. SPICA was 

able to identify 33 statistically significant (P < 0.05, step-down permutation corrected) 

continuous ion-pair features via the K-S test (example shown in Supplemental Figure 2A), 

and 3497 statistically significant (P < 0.05, step-down permutation corrected) discrete ion-

pair features via the Fisher’s exact test (example shown in Supplemental Figure 2B). These 

features were utilized to construct a heterogeneous PCA scores plot, shown in Figure 4A, 

which illustrates a very strong separation between the pre-exposure (red circles) versus the 

post-exposure (blue triangles) samples. When comparing these results with the PCA scores 

plot (Figure 4B) generated from a traditional single-ion approach (see Supplement 1 for 

more detail on parameters) for identifying statistically significant features via the K-S test (P 

< 0.05, uncorrected), the qualitative separation is markedly more difficult to discern. 

Notably, no multiple testing correction was conducted for identifying the 307 statistically 

significant single-ion features, as it would have reduced the significant feature count to 

impractically small numbers for any appreciable analysis. Thus, in comparison to SPICA, 

the single-ion results may exhibit a far higher false positive rate.

Putative metabolomic pathway analysis was also conducted on the 3530 statistically 

significant features, which yielded a number of significantly perturbed KEGG pathways via 

single-mapped (Figure 5A) and dual-mapped (Figure 5B) feature analysis. The graphs plot 

the - 1*log10 transformed p-values, both uncorrected (blue bars) and FDR corrected (red 

bars), via the hypergeometric test for significance. The yellow line is the threshold for a 

FDR of 0.1. Analysis of both the single-mapped features, i.e. ion-pairs in which both 

constituent ions map to the same metabolic pathway, as well as the dual-mapped features, 

i.e. ion-pairs in which the ions map to different pathways, yielded lysine biosynthesis 
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(ko00300) and lysine degradation (ko00301) as statistically significant (P < 0.10, FDR 

corrected). Poly-L-lysine has been linked to hematopoietic stem cell differentiation, and 

amino acids in general play a role in forming free radicals as a result of ionizing radiation 

exposure.27 Analysis of the dual-mapped features also yielded folate biosynthesis (ko00790) 

as being statistically significant, which has been directly linked to radiation exposure.28 

Furthermore, an MDS plot (Figure 5C) produced from analysis of dual-mapped features 

indicates that the folate biosynthesis pathway is differentially perturbed when compared to 

the perturbation of the two lysine pathways, which are nearly identical (most likely the result 

of many shared ion-pair features). This may suggest that the ion-pair features mapped to the 

folate pathway may reveal different underlying mechanisms from that of the lysine 

pathways.

Finally, a Monte Carlo cross validation (MCCV) procedure was conducted on the TBI data 

utilizing a novel support vector machine (SVM) based SPICA derived prediction algorithm 

called Adaptive Paired Ion Contrast Classification Analysis, or APICCA (detailed in 

Supplement 1). Approximately 10% of the samples were randomly removed from the 

original data set, while the remaining 90% were utilized to train APICCA. The 10% would 

then be classified to evaluate the accuracy of the prediction model. To reduce computation 

time, the top 1000 statistically significant (uncorrected p-value < 0.01) continuous ion-pair 

features ranked by K-S derived p-values, and the top 1000 statistically significant 

(uncorrected p-value < 0.01) discrete features ranked by Fisher’s exact test were utilized for 

classification. To evaluate the efficacy of APICCA, a traditional single-ion based SVM 

classifier utilizing filtering and normalization procedures that mirror SPICA’s workflow was 

utilized (detailed in Supplement 1). A K-S test was also used for selecting statistically 

significant (P < 0.01, uncorrected) single-ion features. The data was resampled 100 times, 

from which a total of 800 predictions from each classifier were used to construct Receiver 

Operating Characteristic (ROC) curves, which plot the sensitivity (true positive rate) versus 

the specificity (false positive rate) of a classifier (Figure 5D). From the ROC curves, it is 

apparent that APICCA (AUC 0.924) outperforms the baseline model (AUC 0.817) by a wide 

margin, and indicates that the predictive capability may potentially be leveraged in practical 

scenarios such as identifying exposed individuals in radiological emergencies for triage and 

treatment.

Analysis of Colorectal Cancer Relapse Data

Identifying the mechanisms of cancer recurrence is especially difficult, given that the 

samples must originate from human cohort studies with numerous potential confounding 

factors. SPICA was used to analyze a colorectal cancer (CRC) data set consisting of 20 non-

relapse urine samples and 20 relapsed urine samples collected from patients at the time of 

surgery, prior to any treatment, and with a minimum follow up time of five years.29 Many of 

the same parameters used during analysis of the TBI data were used, including a Zthr of 

0.50, an Lthr of 0.9, and a porous biological rule set, however the FDR procedure was used 

for MTC instead of permutation, as the latter was too conservative, and did not produce 

adequate results. SPICA was able to identify 590 statistically significant (P < 0.05, FDR 

corrected) continuous ion-pair features via the K-S test and 5871 statistically significant (P < 

0.05, FDR corrected) discrete ion-pair features via the Fisher’s exact test. These features 
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were utilized to construct a heterogeneous PCA scores plot, shown in Figure 6A, which 

indicates a strong clustering of non-relapse samples (red circles) versus the comparatively 

spread out distribution of the relapse (blue triangles) samples. This suggests a lower 

variance in the statistical distributions of the significant features for non-relapse cases, in 

contrast to a higher variance in the distributions of these same features for relapsed patients. 

As with the TBI data, the PCA scores plot (Figure 6B) generated from a traditional single-

ion feature approach exhibits a much lower qualitative degree of separation between the two 

sample groups. Again, no multiple testing correction was utilized in identifying the 236 (P < 

0.05, uncorrected) statistically significant single-ions via the K-S test, as it would have 

reduced the number of results to impractical levels.

Putative metabolic pathway analysis was conducted only on the dual-mapped ion-pair 

features, as there were insufficient single-mapped features for analysis. The results (Figure 

7A) indicate that by far the most significantly perturbed KEGG pathway was folate 

biosynthesis (ko00790). Increased dietary folate intake has been strongly linked with a 

decrease in CRC risk.30 Other pathways found to be statistically significant (P < 0.10, FDR 

corrected) include propanoate metabolism (ko00640),31 as well as GABAergic synapse 

(ko04727),32 sphingolipid metabolism (ko00600),33 and several other pathways, many of 

which have been identified in the literature as being associated with colorectal cancer. The 

MDS plot (figure 7B) suggests that the perturbation of the folate biosynthesis pathway is 

distinctly different from the perturbation of other pathways, and also suggests that 

tryptophan metabolism (ko00380), not seen in the more traditional pathway analysis 

procedure, may be significant, and indeed the literature suggests that tryptophan levels are 

associated with quality of life in CRC patients.34

As with the TBI data set, MCCV was also conducted with the CRC data via APICCA. The 

same parameters used during validation with the TBI data set were used for the CRC data as 

well, for both APICCA and the baseline model. Due to the lower sample count, cross 

validation was repeated 200 times instead, for a total of 800 predictions, which were utilized 

in constructing an ROC curves (Figure 7C). These curves again show APICCA (AUC 

0.891) outperforming the baseline model (AUC 0.833) by a considerable, if less impressive 

margin than in the TBI data.

Discussion

There is a categorical need for algorithms specifically designed for the burgeoning field of 

metabolomics, and SPICA is one of the first attempts at developing highly specialized tools 

for postprocessed LC-MS metabolomic data sets. Its ability to incorporate the idiosyncrasies 

of metabolomic data sets, rather than simply working around it, sets it apart from the 

techniques that have been utilized thus far. Furthermore, SPICA represents a comprehensive 

workflow that provides both exploratory capabilities, via its heterogeneous PCA 

implementation and its putative pathway analysis, as well as predictive capacity, via the 

SVM based APICCA. At its core, SPICA’s ion-pair paradigm is not limited to the analytical 

procedures used in the workflow described herein, and can be used in tandem with any 

statistical and computational technique for conducting data analysis, potentially with 
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application to other “−omics” data as well.. These aspects make SPICA a powerful tool that 

serves to enrich the metabolomics platform as a whole.

SPICA’s defining characteristic of using paired features in lieu of the customary single 

feature based analysis allows it to more fully utilize a metabolomic data set during analysis. 

Whereas traditional single feature methods will stumble when there is too much missing 

data, SPICA’s ability to interpret its paired features as discrete variables allows information 

to be extracted even when the available data is sparse. For instance, in a dichotomous data 

set with 10 samples each in the control and treated groups, if an ion’s abundance value is 

only non-missing in 2 of the control samples and in 6 of the treated samples, traditional 

statistical hypothesis testing would fail due to insufficient data. SPICA, however, would pair 

this ion with another ion feature whose data is not as sparse, converting it into a discrete ion-

pair feature that may potentially yield relevant information. We speculate that it is primarily 

this efficacy in data utilization that allows APICCA to outperform the baseline single-ion 

procedure, rather than the characteristics afforded by utilizing ion-pair features. Nonetheless, 

it is this pairwise approach that facilitates maximizing the extraction of relevant information 

from a data set. This underscores the need to develop specialized algorithms for 

metabolomics data, as many valuable insights can be overlooked from using all-purpose 

tools for analysis.

Perhaps a less obvious benefit of SPICA’s paired feature approach is its ability to 

circumvent normalization issues that often plague metabolomics studies. For instance, the 

sample-to-sample variation in urine concentration levels may be a major confounding factor 

in a study. Even minor pipetting errors during sample preparation for less variable sample 

types such as cell lysate extracts can cause unforeseen issues during data analysis. While 

tried and true procedures such as TIC normalization may alleviate the issue, SPICA’s use of 

ion-pair features bypasses the problem due to the fact that only the difference between 

abundance values for any two given ions is analyzed, rather than the absolute abundance 

values themselves. Thus, inter-sample concentration variations are effectively removed from 

consideration, as absolute abundance values are never directly compared to one another 

during SPICA’s analysis. A common normalization technique for urine metabolomics 

involves normalizing all abundance values by creatinine, which is one of the most abundant 

metabolites in urine, and a good indicator of kidney function. In a sense, it is a form of ion-

pair analysis, as every ion is paired to creatinine. SPICA essentially generalizes this concept 

by “normalizing” every ion by every other ion in the sample via exhaustively generating all 

possible ion-pair features. SPICA’s normalization property may be crucial in some sample 

types, such as serum, saliva, and many other biofluids where there is no obvious or 

biologically relevant metabolite that can be used for normalization.

The advancement of the field of metabolomics through the development of specialized 

informatics techniques is just as crucial as its other aspects. It is through such tools that 

metabolomics can mature into a more standardized platform that can gain a wider user base. 

The development of SPICA, a novel methodology expressly for postprocessed LC-MS 

metabolomics data, has been predicated on these goals.
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Conclusion

The development of SPICA represents a concerted effort to create novel algorithms 

expressly for postprocessed metabolomics data, which are designed to address many of the 

obstacles that make analysis difficult. SPICA specifically addresses the issue of “noisy” data 

that is especially exacerbated for metabolomics, which is due in to the platform’s high 

sensitivity and capability to process a far wider gamut of biological sample types. Taken 

together, these techniques we have proposed represent a comprehensive workflow that 

provides both exploratory and classification capabilities which encompasses many of the 

goals for which metabolomics was initially envisioned to fulfill. While the concept of an 

ion-pair may be more difficult to understand than a single ion, we have effectively 

demonstrated that augmenting traditional methods of pathway analysis can be used to 

produce potentially biologically relevant results that are palatable to investigators without a 

strong informatics background. With metabolomics, and “−omics” platforms in general 

being touted as paving the way for non-hypothesis driven biomedical research, SPICA’s 

ability to translate often inscrutable high-throughput data into comprehensible results with 

biological meaning in a statistically rigorous manner is crucial for furthering these goals.
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Figure 1. 
The workflow of SPICA’s Initial Data Reprocessing stage, which conducts a preliminary 

attenuation of potentially confounding factors in the data. All Ion features of a dichotomous 

data set are initially categorized as either partial- or complete-presence features, and 

subsequently undergoes transformation and Gaussian normalization. Biological filtering 

based on the putative identification of the ion features is then conducted, and the data from 

both ESI modes is then merged into a unified transnormalized dichotomous data set
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Figure 2. 
The workflow for the Ion-Pair Reinterpretation stage of SPICA. Ion features from 

transnormalized dichotomous data, which has been categorized as either complete-presence 

or partial-presence, are exhaustively paired to form all possible ion-pair features. Pairs 

formed from two complete-presence ions are constructed as continuous ion-pair features, 

while all other pairing combinations are used to construct discrete ion-pair features. 

Continuous ion-pair features undergo a filtering process that examines the degree of 

missingness (zeros refiltering Zthr), and outlier percentage (Lthr). Continuous features that 

pass are retained as continuous variables, but those discarded during this process are 

reinterpreted as discrete ion-pairs. All discrete ion-pair features also go through an outlier 

filtering process. The continuous and discrete ion-pair features that are ultimately retained 

by the end of this process are considered suitable for further analysis via SPICA.
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Figure 3. 
The putative metabolic pathway analysis workflow. After statistical analysis has determined 

which ion-pair features are significant, all features are analyzed via putative ion 

identification as either single-mapped or dual-mapped. Both feature types can be utilized in 

a standard pathway analysis procedure (green box) that determines whether a metabolic 

pathway has a statistically greater than expected fraction of statistically significant ion-pair 

features mapped to it. Statistical significance for a pathway is determined via the 

hypergeometric test, and once all pathways are analyzed in this fashion, p-values are 

corrected via FDR. Results for the single- and dual-mapped features are displayed in 

separate bar graphs that plot the - 1*log10 of corrected and uncorrected p-values for each 

pathway. Dual-mapped features are further examined in a procedure (orange box) that is 

similar to the aforementioned pathway analysis, but instead determines whether there is a 

greater than expected fraction of significant ion-pair features for any two given pathways, 

instead of just one. This allows for a distance matrix to be constructed, and a MDS plot to be 

created from it, which allows for pathway perturbation to be visualized in relation to other 

pathways. This gives magnitude, as well as direction to a pathway’s perturbation, where the 

previous analysis only supplied magnitude (via p-values).
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Figure 4. 
PCA scores plots generated from the statistically significant features identified from two 

analyses of urine samples collected from 36 patients before and 6 hours after exposure to 

125 cGy of total body gamma radiation (TBI). (A) The plot generated from SPICA’s 

heterogeneous PCA indicates a very strong separation between the pre-exposure (red circles) 

and post-exposure (blue triangles) samples as defined by the 3530 statistically significant 

total ion-pair features. Both sample groups also exhibit a high degree of clustering as well. 

(B) Separation between the two groups and clustering within each group in the standard 

PCA plot is markedly more difficult to discern when conducting a traditional single-ion 

analysis, which identified 307 statistically significant single-ion features.
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Figure 5. 
Putative KEGG metabolic pathway analysis of both the single-mapped (A) and dual-mapped 

(B) ion-pair features of the TBI data yields lysine biosynthesis (ko00300) and degradation 

(ko00301) as being statistically significantly perturbed (P < 0.1, FDR corrected), though 

dual-mapped features reveal folate biosynthesis (ko00790) as being affected as well. 

Additional analysis of dual-mapped features produced an MDS plot (C) visualizing both 

magnitude and direction of perturbation, and reveals folate biosynthesis perturbation as 

being distinct from the perturbation direction of the lysine pathways. Finally, ROC curves 

(D) of the SPICA based SVM classifier (black line, AUC: 0.924) and a baseline single-ion 

based SVM classifier (red line, AUC: 0.817) demonstrate the powerful predictive potential 

of SPICA’s ion-pair features, which unequivocally outperforms the traditional single-ion 

based classifier, and may even be strong enough for practical applications such as 

identifying exposed individuals in radiological emergencies.
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Figure 6. 
PCA scores plots generated from the statistically significant features identified from two 

analyses of urine samples collected at the time of surgery from 20 colorectal cancer (CRC) 

patients with no recurrence, and 20 that eventually relapsed. (A) The plot generated from 

SPICA’s heterogeneous PCA contrasts the strong clustering of the non-relapse samples (red 

circles) when compared to the relatively spread out relapse samples (blue triangles), which 

may be a valuable clue in uncovering the mechanisms behind CRC recurrence. Nonetheless, 

separation between the two groups is well defined. A total of 6461 statistically significant 

ion-pair features were identified during this analysis. (B) As with the TBI data, traditional 

analysis, which identified 236 statistically significant single-ion features, yielded 

unimpressive, but discernable separation between the two groups.

Mak et al. Page 20

Anal Chem. Author manuscript; available in PMC 2015 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Though there was an inadequate number statistically significant single-mapped ion-pair 

features for putative metabolic pathway analysis in the CRC data, dual-mapped features 

revealed several significantly perturbed (P < 0.1, FDR corrected) metabolic pathways (A) 

linked to colorectal cancer. The most significant pathway identified, folate biosynthesis 

(ko00790), is of particular interest, as a high folate diet has been strongly linked with a 

decrease in CRC risk. Additional analysis of dual-mapped features produced an MDS plot 

(B) visualizing both magnitude and direction of perturbation, and reveals an additional 
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pathway, tryptophan metabolism (ko00380), as potentially playing a role as well. ROC 

curves (C) of the SPICA based SVM classifier (black line, AUC: 0.833) and a baseline 

single-ion based SVM classifier (red line, AUC: 0.891) again demonstrates that the 

predictive potential of SPICA exceeds that of single-ions, though to a lesser degree than in 

the TBI data.
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