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Abstract 18 

 19 

Microbial forensics has been defined as the discipline of applying scientific methods to 20 

analyzing evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a 21 

biological agent or toxin for attribution purposes. Over the past 15 years technology, particularly 22 

massively parallel sequencing, and bioinformatics advances now allow characterization of 23 

microorganisms for a variety of human forensic applications, such as human identification, body 24 

fluid characterization, post-mortem interval estimation, and biocrimes involving tracking of 25 

infectious agents. Thus, microbial forensics should be more broadly described as the discipline of 26 

applying scientific methods to analyzing microbial evidence in criminal and civil cases for 27 

investigative purposes.   28 

 29 

Key words: Microbial forensics, bioterrorism, biocrime, human identification, epidemiology, 30 

validation  31 
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The anthrax letter attacks of 2001 in the United States ushered the world in a new reality and 32 

increased awareness of global vulnerability to bioterrorism. In addition, the event demonstrated 33 

that as a nation the United States was woefully unprepared to characterize the biological 34 

evidence associated with the case. As a consequence, the field of microbial forensics was 35 

developed to build a robust forensic capability to help investigate bioterrorism and biocrime. 36 

Microbial forensics is the discipline of applying scientific methods for analyzing evidence from a 37 

bioterrorism attack, biocrime, hoax, or inadvertent release of a biological agent or toxin with 38 

attribution as the ultimate goal (1). Attribution of microbial evidence is to determine an 39 

associated source and/or perpetrator or group of individuals to the highest degree possible. The 40 

microbial forensics field is built on a network of multiple specialties (e.g., microbiology, 41 

genetics, bioinformatics, forensic science, immunology, population genetics, biochemistry, 42 

molecular biology, epidemiology, etc.) and the law enforcement, public health, policy, and 43 

intelligence communities. While the field was formalized shortly after the anthrax letter attacks, 44 

its roots are well-established as they are embedded in the same practices used for decades in 45 

epidemiology and public health to investigate disease outbreaks. Epidemiologists focus on the 46 

outbreak, the population(s) at risk, spread of disease, possible reservoirs, and characterization of 47 

the etiologic agent (2), to serve primarily the health care system. Both epidemiology and 48 

microbial forensics are employed together to attempt to determine if an outbreak is natural, 49 

accidental, or intentional. Therefore, the two disciplines are integrated and specialists tend to 50 

work together with the latter concentrating on individualization of the agent or toxin and/or how 51 

it was produced and disseminated. In addition, traditional forensic methods, such as fingerprints, 52 

human DNA, trace materials, and handwriting, are exploited in a microbial forensic investigation 53 

as ultimate attribution is identification of the perpetrators of the crime.  54 
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 55 

There are over 1400 microbial species or strains that are potential health threats to humans (3) 56 

and the number expands by orders of magnitude when considering plant and animal pathogens. 57 

While high consequence agents (4) have been targeted for preparedness, they are but a small 58 

percentage of possible biothreats, and it is not practical to continue to develop assays directed at 59 

single targets. There are simply far too many targets. Only 20 years ago, it took 13 months and 60 

cost more than $870,000 for the first bacterial genome to be sequenced and assembled by the 61 

Institute of Genome Research (Rockville, MD) (5, 6). Seven years later for about the same 62 

amount of time and a lesser cost (approximately $200,000-$300,000 for the first genome) 63 

genomic sequences were obtained of the Bacillus anthracis Ames strains from the evidence in 64 

the letter attacks and purported reference samples (7–9).  Technical advancements in recent 65 

years, through the advent of massively parallel sequencing (MPS) (which also has been referred 66 

to as next-generation sequencing (NGS) and high-throughput sequencing (HTS)), allow analysis 67 

of microbes with a throughput and speed that was not thought possible a short time ago. MPS, a 68 

disruptive technology and a boon to microbial forensics, may overcome the challenge of 69 

identifying unknown pathogens, hoax microorganisms, and low-abundance microorganisms even 70 

in complex mixture samples. With its substantially increased throughput and continued 71 

development of powerful bioinformatics pipelines, MPS may be used to characterize any 72 

microbe, abundant or trace, degraded or intact, and even genetically engineered genomes with 73 

one unifying approach. MPS provides an ability to rapidly diagnose and monitor infections 74 

using culture-independent methods (thereby reducing cost and turn-around time) and track 75 

disease outbreaks in real-time using whole-genome comparisons (10–12). Indeed, Cummings 76 

et al. (13) showed several years ago the forensic capability of MPS to rapidly and reliably 77 
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sequence multiple whole genomes. Since then epidemiologists have applied MPS to several 78 

outbreak investigations (10–12, 14–17), and it is anticipated that MPS eventually will become 79 

the routine method for genetic analyses. In addition, MPS provides a methodology for human 80 

microbiome studies, which provide inference into different health and disease states and impact 81 

on conditions such as obesity, inflammatory bowel syndrome, effects from antibiotic use, and 82 

cancer (18–20). These same tools have been used to characterize the complex community of the 83 

human microbiome and have been demonstrated for use in human forensic applications, such as 84 

human identification, body fluid characterization, and time-since-death decomposition analysis.  85 

 86 

Since the field of microbial forensics was developed in response to exigent circumstances, it was 87 

narrowly defined concentrating on the immediate concern - bioterrorism. Other examples of 88 

microbial forensics investigations included tracing transmission of human immunodeficiency 89 

virus (HIV) and hepatitis C virus (HCV) in criminal health related matters (21–28) which fall 90 

under the biocrime category (Table 1).Therefore, microbial forensics focused on investigations 91 

where the microbe or its products, (e.g., toxins) were used as weapons or biothreats. However, 92 

over the past 15 years technological advances and the realization of the vastness and abundance 93 

of the microbial world prompt the field to expand in other areas where microbes and their 94 

products may help other types of forensic investigations, including human identification (29) and 95 

post-mortem interval estimation (30). This expansion of exploiting microbes forensically beyond 96 

investigating bioterrorism and biocrime requires a more comprehensive definition for the field of 97 

microbial forensics. Microbial forensics now should be broadly defined as the discipline of 98 

characterizing microbiological evidence to develop investigative leads in criminal (and civil) 99 

cases.  100 
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 101 

The expansion of the microbial forensics field extends into the realm of forensic human identity 102 

testing. Human microbiome analysis can be combined with traditional human DNA testing (e.g., 103 

short tandem repeat (STR) and single nucleotide polymorphism (SNP) analyses) to potentially 104 

provide additional data for stronger associations and better chances to exclude individuals falsely 105 

associated with biological evidence (Figure 1). Human DNA-based identity testing allows for 106 

analysis of stable, inherited markers in the human genome related to individualization, kinship, 107 

ancestry, and phenotype. In contrast, forensic microbiome testing allows for the analysis of both 108 

stable and fluctuating changes in microbial communities on and in the body related to 109 

individualization, diet, health, recent geolocation, and post-mortem time intervals. Microbial 110 

genetic markers can be used to expand upon current forensic genetic testing capabilities. 111 

 112 

Microbial Forensics and Human Identity Testing 113 

 114 

Humans are born with approximately 20,500 genes and die with over 1,000,000 genes (31–33). 115 

This change in gene count is due to the accumulation of microorganisms as part of the normal 116 

development and existence of human beings. Indeed, there are ten times more bacterial cells in 117 

and on the body than there are human cells, making us reconsider what makes us human. The 118 

substantial microflora that humans carry is known collectively as the human microbiome (32, 119 

33). The majority of human microbes are autonomous, self-replicating, transmissible, 120 

unavoidable, and, in general, ubiquitous, although they may vary to some degree or substantially 121 

from human-to-human (34, 35). The microorganisms, and their accompanying nucleic acids, that 122 

are carried by humans are shed, deposited, and exchanged routinely, in a similar fashion to 123 
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human DNA which is exploited for identifying people involved in sexual assaults, murders and 124 

burglaries. These microbial genomes from many different microbial species collectively are 125 

complex and variable and may provide forensic signatures that could be as individualizing as are 126 

the current set of human short tandem repeat markers (36) used for identity testing purposes. In 127 

addition, since microorganisms that reside in different areas of the human body vary, additional 128 

investigative value could be obtained for determining the tissue source of forensic biological 129 

evidence. Thus, the human microbiome may be another target that could be used to identify (or 130 

exclude) humans involved in crimes.   131 

 132 

When people touch items, they often transfer their DNA onto objects (via primary, secondary 133 

and tertiary transfer) (37, 38). Therefore, an individualizing signature is left behind that can be 134 

exploited to determine the identity of an individual who may have handled an object. Forensic 135 

DNA typing characterizes genetic signatures from human biological samples. The current DNA 136 

typing methodologies focus on markers in the human genome and are sensitive, highly 137 

discriminating and well-validated (for examples see (39–41)). Unfortunately, the amount of 138 

human DNA deposited by touching an object often is very low, and most technologies cannot 139 

reliably type such low levels of DNA. To attempt to obtain results from such limited samples, 140 

modifications of current methods are made to increase the sensitivity of detection of human 141 

DNA. Collectively, the suite of methods that increase the sensitivity of human DNA typing 142 

protocols are known as low copy number (LCN) typing (42–44). Under LCN typing, limited 143 

template analyses suffer from exaggerated stochastic effects and with increased sensitivity there 144 

is a greater potential for contamination. This lack of reproducibility with LCN typing results has 145 

not deterred the interest in LCN typing and its potential use for developing investigative lead 146 
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purposes. One way to partially overcome the uncertainty of LCN typing methodology is to 147 

employ an orthogonal approach. In fact, each technology, i.e., LCN typing and the orthogonal 148 

methodology, may not be robust, but when performed together, the information may be 149 

sufficiently corroborating to decrease uncertainty, enabling better use results from trace 150 

biological sample analyses for developing investigative leads.  151 

 152 

Given the much greater number of bacterial cells compared with human cells, it is conceivable 153 

that more bacterial cells and thus gene targets are deposited on touched items than are human 154 

markers. Indeed, Grice et al. (45) showed that 10,000 bacteria/cm
2
 and 50,000 bacteria/cm

2
 155 

could be collected by swabbing and scraping, respectively, the skin. Of course the population of 156 

bacterial cells is comprised of many species with varying abundance levels. However, a 157 

combination of enrichment methods, such as PCR, and sequencing can be used to detect those 158 

species that may be used to individualize their human hosts. Goga (46) sought to analyze 159 

bacterial DNA from shoes as the quantity of human DNA often was at LCN typing levels. They 160 

demonstrated that there are sufficient bacteria in shoes and the plantar skins of individuals and 161 

that the microbiome communities were unique among the individuals tested. A level of 162 

“matching” was possible between shoe and wearer profiles. However, the results varied 163 

substantially and in a few comparisons the wearer and another individual could not be resolved. 164 

Tims et al. (47) analyzed the microbiome before and after hand washing and observed similar 165 

variation. They opined that constant bacterial contamination by touching may impact the results. 166 

These findings were not similar with those of Fierer et al. (48, 29) who collected reference 167 

bacterial samples without washing and successfully matched reference microbial communities to 168 

those deposited on touched objects, such as keyboards and computer mice. Fierer et al. (48)  169 
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suggested that washing may have changed the composition of the hand skin microbiome. For 170 

hand microbiome profiling, an unwashed hand may be a better starting point for studies. More 171 

study is needed to determine the suitability for touch sample analyses.  172 

 173 

Gut microbiome profiling also may be an important tool for forensic human identity testing. 174 

There is evidence that  core gut microflora of an individual are stable (49)(50) but can be 175 

affected by environmental changes and antibiotic use (51)(52). Fecal material has been found at 176 

some crime scenes and determining the source of such evidence may be an important 177 

investigative lead.  Typically, human STR profiling is attempted but with mixed success. 178 

However, fecal material, the primary material used to study the gut microbiome, carries a 179 

microbiome profile that could be exploited for identification purposes. The  stable microbiome 180 

may provide identity information while fluctuating or transient microbiota could indicate recent 181 

diet or geolocation. 182 

 183 

Identification of the tissue source of forensic biological samples can be critical in some 184 

investigations to reconstruct crime scenes and events, but current techniques are limited. 185 

Presumptive tests for the specific body fluids are used as screening tests and tend to have 186 

specificity limitations. Screening, often quick and inexpensive, is used to select the best 187 

candidate samples for more in-depth testing. Confirmatory tests identify tissues with high 188 

specificity. While gene expression (mRNA typing) (53, 54) and methylation (55) have been 189 

described, most presumptive and confirmatory tests are protein-based enzymatic or immunologic 190 

assays. The exception is microscopic visualization of sperm for identification of semen. Proteins 191 

are less stable than DNA and a negative result may not indicate reliably the tissue source of a 192 
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sample or the amount of DNA in a sample. Most tissue assays are non- or semi-quantitative 193 

without a defined threshold for a positive reaction. Because of the different assay formats for 194 

each tissue specific target, presumptive and confirmatory tests cannot be run in a similar parallel 195 

manner, adding to labor demand and difficult to automate in a cost effective way.  196 

 197 

Unique bacterial genetic signatures may aid in biological sample tissue source determination. For 198 

example, Lactobacillus crispatus, L. jensenii and Atopobium vaginae have been associated with 199 

vaginal secretions, while L. iners, L. gasseri and Gardnerella vaginalis have been found in other 200 

body fluids as well (56–58). Tissue specific in the vagina could be informative in rape cases. 201 

Nakanishi et al. (59) showed that Streptococcus salivarius and S. mutans could be detected in 202 

mock forensic saliva samples and were not present in other forensically-relevant tissue sources. 203 

Choi et al. (60) had similar findings for S. salivarius. These species are relatively abundant and 204 

thus may be easily detected.  205 

 206 

Nose and throat (respiratory and digestive) commensal bacteria are likely candidates for 207 

geographical and recent contact information because they demonstrate high temporal stability 208 

(persistence), are contagious organisms (airborne and fomites), exhibit clonal and geographical 209 

variation and diversity, colonize a large portion of the population, and are easy to collect (e.g., 210 

see (61, 62)). Scheidegger and Zimmerli (63) have shown that Staphylococcus aureus is a high 211 

incidence bacterium among drug users. Shared drug paraphernalia can be an avenue for bacterial 212 

transmission (64) which can be colonized transiently or permanently (65). A study of 213 

inhalational drug users detected similar S. aureus strains between users and drug paraphernalia 214 

(66). The S. aureus strain analysis traced back fourteen social networks (known groups of 215 
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individuals connected by social interaction and reported drug use) linked to a crack house, while 216 

only two of the biological networks (nasal culture and drug paraphernalia linked by significant 217 

similarity among isolates) were identified by social network analysis. These data demonstrate 218 

that behavioral, social and environmental networks may be identified by analysis of a targeted 219 

species of the human microbiome. Because environment is related to social networks, hygiene, 220 

diet, geography, etc., microbiome analyses could be an additional tool for intelligence gathering. 221 

Lastly, the profiles could be used to confirm or refute what persons of interest claim about where 222 

they have been and with whom they have associated. If microbial profiles of an individual reflect 223 

the unique nature of a complex microbial community, microbial profiles may be better than 224 

human DNA typing for recent geolocation as the environment (including contact with groups of 225 

individuals) may carry location specific microorganisms that will be exchanged through human 226 

contact. 227 

 228 

Tracking sexually transmitted diseases in child molestation, rape cases and questioned 229 

malpractice cases in healthcare provider outbreaks have been well documented for HIV and 230 

HCV cases (21–28) and have been part of the microbial forensics arena. A full scale analysis 231 

which demonstrated the potential of such investigations was reported by Gonzáles-Candelas et 232 

al. (28). These authors described in detail a case of a Spanish anesthetist convicted of 233 

malpractice by infecting over 270 of his patients with hepatitis C virus (HCV). The case is 234 

particularly interesting due the time frame of the investigation some 25 years after the first 235 

suspected transmission(s) and by the number and complexity of potential infectious events (> 236 

300 candidates from two hospitals). Thus, scientifically challenging, but forensically obvious 237 

questions were posed to the experts: 1) Was the suspect the source responsible for the outbreak?; 238 
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2) Could  it be ascertained whether the patients that had been infected share a common source 239 

and thus could be included in the outbreak?; 3) Alternatively, which patients could have been 240 

infected from other sources?; 4) Could these alternative sources or the existence of different but 241 

simultaneous outbreaks be determined?; 5) Could  the duration of the outbreak be determined?; 242 

6) Could the time of infection for each patient in the outbreak be estimated?; and 7) Could the 243 

date of infection of the anesthetist be estimated? These questions were tackled by sequencing 244 

229-nucleotides of a conservative nonstructural NS5B gene using standard Sanger sequencing 245 

technology. After systematic and rigorous analyses the authors concluded that the suspected 246 

health-care professional was indeed the source of the HCV infection of a portion of infected 247 

individuals and provided likelihood ratios to support the findings vs an alternative hypothesis. As 248 

in many other forensic DNA investigations the data were not used to prove if the suspect was 249 

guilty as the results only provide identity of the virus and strain (or quasi-species). The data 250 

combined with other evidence were used to convict the anesthetist.  251 

 252 

The human virome also can be used potentially for characterizing unidentified cadavers, even in 253 

cases of skeletonized remains. Toppinen et al. (67) are the first to describe the suitability of bone 254 

as source for exploration of DNA viruses (as ancient DNA researchers have shown describing 255 

bacterial strains of plague victims from past pandemics (68–70)), but instead for forensic identity 256 

purposes. They showed parvovirus B19 DNA sequences were found abundantly in 70-year-old 257 

long bones of putative casualties from World War II. The reported viral sequences were 258 

exclusively of a genotype, which disappeared from circulation in 1970´s, or of a genotype which 259 

has never been reported in Northern Europe. By adding the viral information to that from human 260 
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mitochondrial and Y-chromosome profiling, the authors concluded a dispute of the origin of two 261 

individuals found in the battlefield between Finland and Russia. 262 

 263 

These cases provide insight into the potential of exploiting the microbial world for forensic 264 

purposes. It is clear that the human microbiome holds substantial information to assist the 265 

forensic science community’s analysis of a variety of case scenarios. 266 

 267 

 268 

MPS Approaches 269 

 270 

Most microbial analyses methods, and in particular metagenomics, have focused on the single 271 

target 16S rRNA gene, which lacks species level resolution. Some of the above mentioned 272 

studies targeted only a few known species that may be unique to a body fluid or tissue, such as 273 

saliva or vaginal secretions. They only require a positive/negative result for tissue sourcing. 274 

However, most of the studies were not sufficient to unequivocally identify the targeted species 275 

among a complex metagenomics background necessary for forensic investigations, and generally 276 

they were not sufficient to provide high-depth characterization at the sub-species or genotype 277 

level. Lastly, such tissue sourcing assays often require redesign of primers to increase specificity 278 

and continual evaluation of potential false-positives with increased sampling and databases as 279 

they are updated with new genomic sequences. If specialized primer design is required for 280 

detection of every, or most microorganisms of interest, there will be great demand on technology 281 

development and require substantial and costly validation.  282 

 283 
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Current major genetic and health efforts are describing the diversity of the human microbiome 284 

(18, 32, 35, 45, 71–73). However, little work has been carried out on how individualizing the 285 

profiles may be, what microorganisms are common to all humans,  what portion of these 286 

common human microbiome species are stable throughout an individual’s lifetime (or at least for 287 

reasonably long time periods), and what portions vary due to environmental conditions. Such 288 

questions cannot be answered until 1) a defined set of resolving markers are developed to assay 289 

the human microbiome; and 2) a defined set of bacterial species are determined that are best 290 

suited for human identity testing.   291 

 292 

There are technical challenges to identify bacteria of interest within highly complex 293 

metagenomic samples, to distinguish those of interest from near-neighbors and from the vast 294 

complex background that constitutes a microbial sample taken from body areas, and the degree 295 

of confidence that can be assigned to a potential species that is detected in such complex 296 

samples.  One approach to meet these objectives is to develop a panel of bacterial markers that 297 

have the potential of differentiating human hosts and that can be multiplexed in a MPS system. A 298 

targeted bacterial marker panel would provide an efficient and cost-effective method that 299 

balances sequence coverage and throughput and yet provides species level resolution. MPS could 300 

provide a single, unifying methodology so the power of the assay can be realized and resources 301 

for testing and validation can be used in a cost-efficient manner. Sensitive and accurate bacterial 302 

DNA detection is imperative for forensics analyses. Validation is an essential part of any assay 303 

and should be become a routine part of technology development and implementation (see 304 

below). The approach to achieve the goals of human identification through the microbiome is 305 

essentially targeted genomics to survey the variety of microorganisms present in a specific 306 
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sample. Microbes of interest for human identity testing should be common among all healthy 307 

individuals and sufficiently abundant to be detected routinely. Human microbiomes represent 308 

unique ecosystems comprised of complex mixtures of microorganisms. For the needs of forensic 309 

diagnostics analysis of metagenomic samples can be more focused than total community 310 

structure and organism abundance studies. Instead molecular analyses can entail identification of 311 

specific microorganisms that provide an individualizing signature to the degree possible. Such 312 

information requires resolution of selected microorganisms from near neighbors as well as from 313 

all other microorganisms of the community that create noise and reduce the sensitivity of 314 

detection of an assay.  315 

 316 

Most metagenomic analyses characterize whole microbial communities at the phylum level often 317 

reporting different abundance ratios of partially resolved taxa. While interesting and informative 318 

for ecosystem analyses, that level of resolution and the variation in abundance from sample-to-319 

sample likely will not achieve human individualization. Instead, for human identification it is 320 

imperative to 1) identify key bacteria that are common to all individuals so identity testing can be 321 

informative with a routine target set of microorganisms; 2) select those bacteria that are 322 

relatively abundant to reduce stochastic sampling effects; and 3) target genes or sequences that 323 

contain sufficient variation to generate a profile that would provide a high degree of 324 

individualization of the donor(s) of bacteria-containing biological evidence.  325 

 326 

Current metagenomic approaches apply MPS and target a single phylogenetic marker, the 16S 327 

rRNA gene, or perform shotgun whole-genome sequencing. The former approach provides 328 

deeper coverage but rarely can differentiate at the species level. The latter approach  may be 329 
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able to differentiate at the species level but lacks depth of coverage and thus stochastic 330 

effects reduce the ability to achieve taxonomic resolution. The 16S rRNA gene is the most 331 

commonly used bacterial genetic marker in phylogenetic studies and broad bacterial 332 

identification. The conserved and variable regions of the gene, a number of databases (e.g., 333 

see (74–76)), and significant volume of 16S rRNA studies add to the appeal of using this 334 

marker. However, there are limitations to using solely 16S rRNA which include insufficient 335 

species resolution (77), PCR bias (78, 79), copy number variation (80) and sequence variability 336 

among a single bacterium (81), inaccurate phylogenetic relationships based on key variability 337 

outside of the marker region (82), and horizontal transfer of the entire gene region (83, 84). 338 

These limitations of using a single gene target to identify bacteria in a complex community will 339 

lead to inaccurate abundance ratios and can confound phylogenetic analyses. Whole-genome 340 

shotgun sequencing provides the ability theoretically to sequence all DNA molecules in a given 341 

sample, potentially covering any given region(s) of many genomes. Whole-genome shotgun 342 

sequencing can obtain species or strain level characterization of a given genome by producing 343 

sequence reads of species/strain-specific informative markers. However, the more area of 344 

any given genome that is attempted to be sequenced, the less depth of coverage will be 345 

obtained for any particular site, potentially reducing the confidence for speciation. Highly 346 

complex metagenomic samples can contain thousands of species within a sample thereby 347 

limiting the coverage of any one genome, especially those at low abundance, such as may 348 

be inherent with trace biological samples. 349 

 350 

A novel metagenomics approach that employs the use of multiple informative phylogenetic 351 

markers can allow greater depth of coverage by interrogating far less genome target than would 352 
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be achieved by whole genome sequencing. Markers suited for the task of species-level resolution 353 

are housekeeping genes, containing appropriate conserved and variable regions, to differentiate 354 

among species. The use of housekeeping genes for bacterial species and strain identification is 355 

not a new concept. Multi-locus sequence typing (MLST), first described almost 20 years ago 356 

(85), is one of the most commonly used bacterial typing methods. MLST typically uses seven 357 

housekeeping genes and the loci composite sequence creates a profile for comparison 358 

purposes. Online MLST databases are available for identification purposes and data storage 359 

(86–88). With MPS, an augmented MLST method has been developed using 20 genes (or 360 

21 genes (89)), called MLST-seq (90). In addition, bioinformatics software packages are 361 

freely available to analyze MLST profiles from shotgun sequencing data (88, 91, 92). Even with 362 

these advances there are limitations with the MLST method, which include non-universal gene 363 

panels and insufficient species level resolution. Seven markers simply are not sufficient for 364 

speciation. In these cases MLVA (multi-locus variable number tandem repeat analysis) and 365 

SNP (single nucleotide polymorphism) analyses have proved beneficial for additional 366 

resolution of specific species (93). An expanded MLST approach has been developed, called 367 

rMLST (ribosomal multi-locus sequence typing), utilizing 53 housekeeping genes to type 368 

bacteria down to the subspecies level (94). Another method using housekeeping genes as 369 

genetic markers was described by Baldwin et al. (95). Their approach consisted of a PCR-370 

based assay using 16 different primer pairs for amplifying 9 housekeeping genes followed by 371 

electrospray ionization mass spectrometry for genus and species-level characterization (95). 372 

This mass spectrometry based assay is very appealing and supports the concept of multiple 373 

markers for speciation, but is limited to detecting only the most abundant 1-3 species in a sample, 374 

i.e., better suited for testing infected individuals with high titer of the target species. 375 
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 376 

Bioinformatics programs can retrieve and use housekeeping genes as genetic markers from 377 

shotgun sequencing data. AMPHORA (AutoMated PHylogenOmic infeRence) has been 378 

developed using a panel of 31 housekeeping genes for better taxonomic resolution than solely 379 

using 16S rRNA (96). These genes were selected because they are found within all bacteria, 380 

mostly present in single copies, and believed to be fairly resistant to horizontal gene transfer 381 

(96). This 31 housekeeping gene panel was modified and another bioinformatic program, 382 

called MetaPhyler, was developed to analyze the data (97). Phyla-AMPHORA was developed 383 

utilizing thousands of phyla-specific phylogenetic markers to improve resolution of 384 

phylogenomic analyses over the initial 31 genes (98). Additionally, PhyloSift enables 385 

phylogenetic analysis of metagenomes, which expands on AMPHORA, and includes 37 386 

bacterial and archaeal genetic markers (PhyEco markers) (99) in the prokaryote core marker 387 

set (100). PhyloSift also provides capabilities for extended and custom marker sets and has 388 

software packages for metagenomic dataset simulation (to test newly generated custom markers) 389 

and statistical analyses (100). Another bioinformatics tool, mOTU, was developed using 40 390 

marker genes (101) to profile metagenomes with species-level resolution (102). Additionally, 391 

FunGene (the Functional Gene Pipeline and Repository) includes 11 phylogenetic markers in its 392 

repository and analysis pipeline(103). Although these programs use different genetic markers 393 

(with a subset of overlapping markers), they demonstrate that the technology and software exist 394 

to develop a custom genetic panel consisting of informative phylogenetic markers to use for 395 

species level identification in human microbiome samples. 396 

 397 

Validation 398 
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Validation is essential in the development of diagnostic methods and those used in microbial 399 

forensics are no exception. The most important consideration is that microbial forensic methods 400 

may develop information that can impact health, life, and freedom of individuals, policy 401 

decisions and possibly action by governments on a large scale. Therefore, results generated from 402 

the analyses of any microbial forensics analysis (including collection, transfer, analytical 403 

method, and interpretation, as well as proper training) must be understood and limitations 404 

defined so that a proper degree of confidence can be associated with findings. Accurate and 405 

credible results are a requisite. Budowle et al. (104) stressed that failure to properly validate a 406 

method or misinterpret the results from a microbial forensic analysis or process may have severe 407 

consequences. 408 

Validation is the process that: “1) assesses the ability of procedures to obtain reliable results 409 

under defined conditions; 2) rigorously defines the conditions that are required to obtain the 410 

results; 3) determines the limitations of the procedures; 4) identifies aspects of the analysis that 411 

must be monitored and controlled, and 5) forms the basis for development of interpretation 412 

guidelines to convey the significance of the findings.” (104) .  The basic features and criteria for 413 

validation are listed in Quality Assurance Guidelines for microbial forensics (1) and addressed 414 

elsewhere in detail (104, 105). Budowle et al. (104)  define developmental validation as “the 415 

acquisition of test data and the determination of conditions and limitations of a newly developed 416 

method to analyze samples” and internal validation “as an accumulation of test data within the 417 

operational laboratory to demonstrate that established methods and procedures perform within 418 

predetermined limits in the laboratory.” Every effort should be made to validate a method 419 

thoroughly before implementation. However, cost, resources, and exigent circumstances may 420 

require a method to be implemented without extensive validation.  Clearly, it is unacceptable to 421 
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hold off on any analyses because an available method has not been completely validated 422 

especially when an attack is underway. In this context, Schutzer et al. (106) described the 423 

process of preliminary validation as “an early evaluation of a method that will be used to 424 

investigate a biocrime or bioterrorism event.”  There is still a requirement to acquire some test 425 

data to evaluate a potential method so peer review of extant data could be performed quickly by 426 

a panel of experts. This panel would recommend limitations and additional studies (if necessary) 427 

to use prior to analyzing evidentiary material. However, it is stressed that a preliminary 428 

validation should not be used as an excuse for obviating a full validation.  429 

 430 

Budowle et al. (105) recently described criteria for validation of MPS procedures. The criteria 431 

are not novel as the same approaches are being used for human genome sequencing and clinical 432 

diagnostics. Three common areas of MPS validation are: 1) sample preparation, 2) sequencing, 433 

and 3) data analysis; but these criteria should be defined in terms of the specific application.  434 

There are a number of general topics subsumed within these three areas, which are listed in 435 

Table 2.  436 

 437 

Addressing these general areas of the MPS method should provide an analytical tool sufficiently 438 

robust for the expanding field of microbial forensics. While the field certainly has matured and 439 

no longer can be considered solely the domain of investigating bioterrorism and biocrime, MPS 440 

technologies are still quite dynamic. It is anticipated that the speed of obtaining sequencing 441 

results will increase and read lengths will be extended with a concomitant decrease in cost. 442 

Applications beyond those discussed here will become part of the microbial forensics arena. 443 
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Good quality practices will ensure that the tools of microbial forensics and the results obtained 444 

will be robust, accurate and reliable.  445 

 446 

As the microbial forensics field expands to incorporate the use of microbiome characterization 447 

for human investigative and forensic testing, additional methods can be created to expand the 448 

forensic genetic toolbox. Likely, more advanced sequencing methods can be developed to better 449 

elucidate the data that can be obtained from complex metagenomic samples which can provide 450 

additional investigative value including geolocation, infection source tracking of biocrimes, post-451 

mortem interval, and increased power of discrimination for human identification. As standards 452 

and quality practices are developed for MPS and metagenomic microbial forensic testing 453 

methods, human microbiome characterization likely will become a routine methodology in the 454 

field of microbial forensics. 455 
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 810 

Figure 1. Expanded human investigative and forensic testing to include human genome and 811 

human microbiome characterization. 812 

 813 

  814 
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Table 1 Examples of microbial forensic and epidemiologic (of interest to forensics) 

investigations 

 Year Case description Reference 

Bacterial 2000-2001 Characterized Staphylococcus aureus strains 

from drug paraphernalia to track drug networks 

(66) 

Starting in 

2002 

Amerithrax investigation-Compared different 

Ames strain morphotypes to determine the 

origin of the source material released in the 

2001 anthrax attacks 

(107, 108) 

2009 Traced the origin of Bacillus anthracis from 

injectional anthrax cases among heroin users in 

Scotland 

(109) 

2010 Traced the origin of the source of the Haitian 

cholera outbreak after the 2010 earthquake 

(10, 110, 111) 

2011 Traced the origin of the 2011 Escherichia coli 

O104:H4 outbreak in Germany 

(11) 

Viral 1992 

 

 

First report of molecular tracking of HIV 

infection from dentist to patients after invasive 

healthcare procedure 

 

(21) 

 

 

1994 Phylogenetic analysis to provide evidence that 

Dr. Richard Schmidt intentionally injected his 

girlfriend with HIV/HCV contaminated blood 

(25) 
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1998 Phylogenetic and molecular clock analysis to 

provide evidence that a Spanish anesthetist 

infected 275 patients with hepatitis C virus 

(28) 

2014 Traced the origin and transmission route of the 

2014 Ebola outbreak 

(112) 

2015 Parvovirus B19 characterization from skeletal 

remains revealed the likely origin of World 

War II casualties 

(67) 
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Table 2 Validation criteria for MPS procedures (from (105)) 

 Extraction of DNA (or RNA) 

o Quality 

o Purity 

 Enrichment 

o PCR 

o Capture 

 Library Preparation 

 Multiplexing 

o Markers 

o Samples 

 Sequencing 

 Data Analysis 

o Raw data processing 

o Quality scores 

o Alignment 

o Variant Calls 

 Reference materials 

o Test materials 

o Controls 

 Databases 

o Test materials 

o Inferences of results 
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 Bioinformatics 

o Software tools 

o Data management 

o Data storage 

o Interpretation  

o Taxonomic assignment 

o Abundance 

o Organism classification  

o Community Structure 

 Standard Operating Protocols 

 Reporting 
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