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Abstract:

Dipole and cavity field transient spectra are investigated for a modified
Jaynes-Cummings (JC) model due to the presence of a second harmonic
generation (SHG) cavily field. For initially de-excited atom and field in &
coherent state detuning effects due to SHG affects the syminetry and splitting
structure of both spectra.

1 Introduction

Jaynes-Cummings (JC) model [1] is a simple fundamental model in the field
of quantum optics that describes the interaction of a single 2-level atom with
& single mode of quantized cavity radiation field in the absence of any dissi-
pation process by the atom or the field. The importance of this model is due
to its mathematical solvability as well as to its richness with many different
interesting phenomena, for example, squeezing [2], collapse-revival phenom-
enon (3], chaos [4], antibunching [5], and trapping states[t-9). Advanced
experimental (as well theoretical) research in the topics of micromasers and
high cavity quantum electrodynamics (QED) (e.g.[10-12) ) has been inspired,
in the first place, by the JC model of atom-field interaction. Extension of
the JC model has been carried out to include effects like: multi-atom system,
multi-level atom, multi-mode caviiy field, time-dependent conpling constant,
dissipation pracesses by the atom / the field, (e.g /13); and references therein).
Recently, we have investigated & modified Jaynes-Cummings Hamiltonian
model that describes the interaction between s 2-level atom and a single



mode field in the presence of a second harmonic generation term (namely.
degenerate parametric amnplification} [14]. The main investigation was to
study the effect of the second harmonic generation on the behavior of the
atomic inversion and the entropic uncertainty, Two further quanturn aspects
of the model in [14}, namely, field entropy as well as phase entropy have been
investigated in [15]. The Hamiltonian for the modified JC model adopted in
[14,15] is of the form,
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Here wy and wy are the field and the atomic transition frequencies respec-
tively, and A is the conpling constant between the field and the atom. The
operators &' and & are the creation and annihilation operators for the cavity
mode such that [, a'] = 1. The operators §.(6_), and &, are the usual
raising (lowering) and inversion operators for the two-level atomic system,
satisfying 6., 6] = +264 and [5,,6 | = 8. The time-dependent complex
funciion £(2) is a response of the second harmonic generation {degenerate
parametric amplifier) and is given by

£(t) = %exp{—.?istj (1.2)

where £ i3 a real constant, and ¢ is the frequency of the split photon. We
may point out that the existence of the second harmonie generation term
in the Hamiltonian (1) reflects possible fluciuations in the strength of the
cavity field that may arise in some situations, such as: (i) Auctuations due to
external signals and (ii} noise processes in the cavity due to internal reactive
effects or collision with cavity walls. A simple example of a change in the
cavity field is due to damping process. In this case, for a realization of
this model the interaction time t;,, satisfies tie << &1, where & is the
rate of leakage of the field out of the cavity. High Q-cavity with factor
& = w/k fulfills this condition. Further, the interaction time tim should be
much shorter than the time scale of atomic spontaneonus decay v %, and long
enough to allow for appreciable exchange of enerpy between the atom and
the field and between the reservoir field modes. i.e A1 << 1., << S
(e..[16]). Also, the model (1) is comparabie with a Hamiltonian model
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describing a long-lived superposition states in cavity QED that depends on
parametiric amplification and engineered sgueezed vacuum reservoir [17].

The aim of the present paper is to investigate both the fluorescent and
transmitted spectra according to the model Hamiltonian (1). In section II
we present an alternative analytical solution ( to that of [14]} for the system
in terms of the evolution operator for two different cases: the first case when
the field frequency w; is not equal to the splitting photon frequency & (w; #
&), while in the second case w; = . Analytical expressions togeiher with
the computational results for the transient dipole and cavity spectra are
presented in section III, TV respectively. Finally a summary is given in
section V.

2 The evolution operator and wave function
solution

The dynamical evolution of the system described by the Hamiltonian (1) can
be studied through the time evolution operator U/ (t) = exp[—ih™! f; H{b)dd).
We briefly outline this derivation [15]. There are two cases to consider.

Case (1) (wy # 2):

By introducing the time-dependent. operators
A = aexplist), and Al = afexp(—iet) (2.1)

and the canonical transformation

ﬁf=£§fcnsh¢r+iﬁ3inh¢, A-:ﬁmahd:—iﬁ*sinheﬁ:
(2.2)

where B and 51 satisly the commutator [B, B'} = 1, the Hamiltonian (1)
hecomes

iy
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where

qﬁ:%t&nh'lfkjﬂ}, Q=VE-R, §=(w-e) £0. -
2.4

In the interaction picture and within the rotating wave approximation (RWA Y where
we neglect the energy nonconserving terms Bé_ , Blé, and terms in exp|+i(wy+
€)t] the Hamiltonian (5) becomes

V'Fl:f Tl BE D=0 | B _—ifA-e
T == g-[ Hg+e +EB'g_e } {25]

where § = Acosh g,and A = wy — ¢.
‘The continuous map £ describing the time evolution between the atom
and the field is defined by the unitary operator generated by H such that

E : Sy —+ 5,8 Sp,
Ep = U(pall) @ pr(0)) U7, (2.6)

Ut} = exp (_% fn ‘H{%}zﬂ“).

We find that the evolution operator [ (t) tekes the following from

e Dy | o

U= [U T |

where the matrix elements E‘T,-J- in the atomic subsystem basis { |} and |g);
the excited and the ground state respectively) are given by

ﬂ_m: = exp [—- z{--ﬁ 5 ﬂ]t} (ms‘qni e i% ﬂ—} uing,,r) )

2 Fi
-~ ” wd = 02t —5in g, 1 -~
Uy = -—igexp [-*L 5 —]—} (vﬁ 4 im;g ) = ()T, {2.8)
- il - Ot {A =€) .
UH = @axp [—{— 5 2 } (msg,.. 1+ 3{29‘"—] }-erl_grn_-tt)



where the factor - 15 & Rabi frequency given by

O = \/E&E{ﬂ. +1) + %{ﬁ - {1)2 (2.9)

with 7i is the photon number operator. Notice that the presence of the SHG
affects the Rabi frequency in two aspects: Scaling the Rabi vacunm frequency
by the factor cosh ¢ (through § ) and changing A — A -, with {2, ¢ given
in (6). The corresponding state vector [¥(t}) for the system is expanded as
foilows,

W(t)) = 3 " {Centt)le, n) + Cpnaa(t)lg,n + 1)) (2.10)
n=0

and is readily obtained via |y(2)) = U7 (#)}4{0)), with U(t) given by {9). Thus
the probability amplitudes are given by

Cen(t) = exp| ;{ A~ ] {(ﬁ‘m {0)(cos g,t + t’%{-l—] sin gnt})
~i (E—"””—*—l sinyntcp,m(oj)] ,
and
Comt1(t) = exp[%{ﬁ — )t [(Umuﬂ{ﬂ}{cmgﬂt- -z'{aﬁ; L singnf})
i (g——"”” sing,.t(?tln{a})] . (2.11)

Case IT (w; =¢):

Note that the present case is not the limiting case of 4 — ( as seen
from equation (6). So, we set £ = wy in equation (2) and follow the same
procedure as in case (I) and define the time-dependent operators A, and .#IL

Av=édexpliwst), and Al =& exp(—iwjt) {2.12)

The Hamiltonian (1) in the interaction picture within the RWA frame
then takes the form

i’r'{l[f} - : it - ]
=g - Acosh kt (A].::r+ exp(—iAt) + Ala uxp{z&tj) .
' (2.13)



Now using equations (8) and (9) together with equation (13), we get for
A =0, the matrix elements of the evolution operator in (9]} as,

U = In(ga) +2) (=) Ian(gn) cosh(2rkt),

r=]

Uy, = =% (Z(—)’Im,m{gjﬂ]smh[[zr L 1]kt]) ; (2.14)
r=0Q

}n‘?:r
-
I

(Iu(yn} +23 (=) L ldn) r:mh{ﬂr.ﬁ:t])

r=]

where g, = (A/k)x+/fi + 1 is & modified Rabi frequency and I,,(.} is the mod-
ified Bessel function of order . The corresponding probability amplitudes
in (12) then has the form,

Cenlt) = (In @) +23 (=)L (3) ::ush(Erkt)) )

r=l

~2 E[—}'Iﬂml}[ﬁ} sinh[{2r 1]&1]) Con+1(0)
r==0

and

r=]

f:‘g,nH“'} = (Iﬂtﬁj""'EE{_J,IZF(E}EUHhmkaJ) Gy,ﬂ+‘-.{m

-2 (i{-)fnm”[m sinh|(2r + 1);;::}) Cen(0). (2.15)

In the following two sections we utilize the solutions (13),(17) to calculate
and investigate both the dipole {i.e. fluorescent) and cavity {i.e transmitted)
transient spectra.



3 The dipole Spectrum

The transient spectrum is given by 18]

o 4
S(t,D,T) = 2r f dt, f dipe T HDNE=t)ol-T-iD)etal( 3 (4 367 (1,9

where I is the Fabry-Pefot detector width. The operators (s (t) represent
the atomic operators & .. for the case of dipole spectrum, while they represent
the field creation and annihilation operators &' and & for the case of cavity
(ie.transmitted ) spectrum. The parameter D — (w — wp) is the detector’s
detuning parameter from the atomic frequency in the case of dipole spectrum.
In the case of cavity spectrum D — (w — wy).

We consider the combined initial state of the {atom & field) system {o be
|9, @) where |a) = exp(- L[af?) T “o 55n) is the coherent field state, The

dipole-dipole correlation function (L {t)C (ta)}) = (0..(t1)8-(t2)) appearing
in (18) is then given by

g, s SNy T :
(@ ()6~ (1)) = exp(~jal) ¥ {——( }—{9,ﬂi0+fh1fﬂ--fﬂzllﬂuﬂ}=
, v reliil
i fi=0 {32]
where we have inserted the completeness relation
. o
I=Y"le,n)e,n| +|g,n +1){g,n + 1f]. (3.3)
n=
For initial atomic ground state|g), equation { 19) has the form
(@4 (L) (k) = exp(~[af®) > (fn.iftl}fn.lffﬂ + Inﬁfil}fu,z'[f-ﬂ)
n=({ {34]



where:

R} = Z%_{ g, 2164 (1) )e, ),

, = {a"}8 :

Iﬂ.l{f'JJ = = {EJHFG* tﬂJ' ,11},
ﬁg; i (ta)lg

Laft) = 3 j—- 9,216 ()]g,n + 1),

[“’1&

fn,'z “2] =

v‘__ {g,n + 1&_(tz)|g, i) (3.5)

Now, any of the four quantities in equation (22) can be calculated as
follows. For example,

L) = i -\f_f_ g,7rle g, (0)eHt e, ),
Z ((t2)lo o (O)(01) ) o (3.6)
oV

where J1)(t;)),. , is the state vector at, (t1) given the specific initial state le, n)
and it is given from equation {12} by

rﬂl{tlj}e.n = {G:,n{tijlﬁf'ﬂ; '”'} =+ GQIJI 1 “1}'er1 4+ 1}}1

and sirnilarly,

{T?I"{h”mﬁ = Coalty Nele, il + G, nH{fl”q'riJr” =1

80,
{W{tl}lg n|'7| fﬂ]"'ﬁ’{f }}Lﬂ - r.rﬂfI“*l” {‘"e uH )r;én Rt
Hence, '
In.l{il}z J'{,}Tﬂ_l-gg"'ﬂ{tr}JEG:’ﬁHIHH'



In a similar mauner we have

In,i{tlj - x_%/ﬂi—-—:ﬁgg.ia+lftlﬂ.;alc:;wl“'l”g
Lalt) = i), laalt) = Io(ty) (3.7)

where, eg, C, .+1(1)|. is obtained from the corresponding expression ) ., (1)
{equation (13) or (17)- depends on Wy 7 € or wy =¢ ) by putting the initial
conditions Cy »41(0) = 0, C, o(0) = 1. Thus, equation (21) takes the form

i "-—P-zmwa a (s h® (1.,
(0:0)3- (1)) = exp(~fof) 3 B aultidas ) H)

na=(}

with

fn (t} - Etﬁ‘g.rﬁlﬁ)|rz"-'::1.:‘,u-1-! {” Iyr ii':"u {f} = Uy.ﬁ+l (t}lgf’:,n {1 {t”.rr'
(3.9)

The expression (25) for the dipole auto-correlation function reduces to
that obtained by Narozhny et al [3] for the JC model, Inserting equation
{25) into equation (18) we get the dipole spectrum Sa in the form,

. oo {ﬁ}(u+lj 3 .
S fIf,D,FJ = 2l exp(—-7) — [[A,l{f” + |B.{t)] ] "
‘ ‘2 (n+1)! (3.10)

where i = |o|? and
Aqlt) = /j an(t) exp[{~T + i D)t — £))dt,
B.(t) - f_t bu(t) exp[(=T + iD)(t — £))di. (3.11)

The explicit analytical expression for the functions An(t) and B, (¢} in
the two cases of wy # ¢, and w; = ¢ are given in the appendix, together with
the corresponding expression for the JC model. The computfational results
for the dipole spectrum in equation (27) are presented in figs.(1-3) where we
note the following -



(i) JC model: For time ¢ = 154 ! and detector’s width I' = A (at
exact atomic resonance A = ( ) symmetric d-peak structure develops with
increasing field input 7 fig.1: central peak at D = 0, and two-side peaks at
DfX =~ 2X(n + 2)%. Also, for fixed 7 this symmetric 3-peak profile survivea
with Increasing £,

(ii) Modified JC model with (wy ¥ €): For splitting frequency mis-
match § = 0.5A,T = A\, A = 0 and for second harmonic generation coupling
parameter & = (.32 at ¢ = 0, fig.(2a), the spectrum starts for small 72 = 0.1
as a single Lorentzian peak and develops to symunetric three-peak spectrum
as 7t gets larger (= 15). For ¢ = 1041, fig.(2b), the dominant central peak
for small #i develops to 3-peak Spectrum as # increases with weight of cen-
tral peak much reduced. For atomic detuning A = 5).the same symmetric
structure occurs but the whole specirum shifts to the right by the value of
A.

(iii) Modified JC model with (wy=e) Att=0,k=01)T= 0.5,
f = 20 the spectrum is a single central peak with narrowed spike (fig.(3a))
but for larger & = 0.8) this central peak broadens (fig.(3b)). For larger
['= 3X two-side peaks emerge (fig.(3¢)). For time t > A~! the central peak
further broadens with the merge of the side peaks,

4 The Cavity spectrum

Following similar procedure to the celeulation of the dipole auto-correlation
function in equation (25). we get the auto-correlation fiunction for the field
operators in the form (assuming the initial combined state js g, a)),

=\ (@)*(07)"

(@t)a(t2) = e Y (9,7(a'(t1)a(ts)|g, 1)

T, fi - V{ﬁg_nl
= (R)H . :
o 2:“ EL l i (nlt)en(ts) + dalta)drra)]  (4.1)
where
@) = [VEF IOl Conlbll + VAT sl Comn )]
doft) = [VAFICOsCanlt)l, + Vi T3 2 @lsCamin )], ]4.2)
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Hence the cavity spectrum S.(¢, D, I'} has the form

e ()t
Se(t,D,T) =20e" Y
n=0

) G®OF +1Da@)f), 43)

where
) = [ el@empli-r+inye -
Da(t) = V/:l dn[t'}exp[{—-l"-l—z'ﬂ}[t—E]de, (4.4)

The explicit analytical expressions for the functions Caft) and D, (1) in the
two cases of wy # &, and wy = e, together with the corresponding expression
for the ordinary JC model, are given in the appendix.

The eomputational results for the cavity spectrum in equation (31) are
presented in figs.(4-6) where we note the following:

(i) JC model: Fort = 10A~" a single central peak develops with increas-
ing i (fig.4).

(ii) Modified JC model with {w f7€) Fort =0and 1001, T = ),
kE=03M A =0,8 =03 and as i increases the spectrum is asymunetric
and has & central peak (of weight increased with 7 ) and one side band of
lesser weight, (fig.5a,b). The asymmetry here is due to the superposition of
Lorentzians of different weights (the coefficients Gn+ ) and different location
(terms in 4F, #%) in the expressions for Caft), and D,(t) in equations in the
appendix (A.3), (A4).

(iii) Modified JC model with (wy = €} For k = 0.1, T = 0.5),
n = 20 and at ¢t = 0, the spectrum is a single broad Lorentzian with spike
at ) = 0 -fig.(6a)- that vanishes as ¢ increases (t=25X""} fig.(6b). For
larger & = 0.8) and I' = 3X two side peaks emerge at ¢ = {0 -fig.(6c)- but
for increasing ¢ = A~ the central peak is broadened with the twao side peaks
move towards the center fig.(fid).

9 Summary

The transient dipole and cavity spectra of a modified J C model have been
caiculated and examined in detail. The inadified JC model [14,13] considered

11



here is the usnal JC model in a high-@ cavity but with the presence of
a second harmonic generation field of the single cavity mode which is not
coupled to the atom { coupling of this background™ second harmonic field
is ignored within rotating wave approximation [14]). Based on the derived
analytical solutions and for initially ground state atom and field in a coherent
state ( of average photon nusaber & ) our main computational investigation
for both spectra are '

(a) Dipole spectrum

In the case when the splitting photon frequency ¢ is not equal to the
cavity field frequency wy (wy # <) the effect of the second harmonic field
shows that the spectrum develops from a single Lorentzian peak to the usual
symmetric 3-peak Mollow structure as i increases, Further increase of 7
for time ¢ 3> A~! (A = coupling constant of atom and first, harmonic cavity
lield) reduces the weight of the central resonant peak significantly. For the
case where wy = £, the initjal spectTum is essentially a single spiked resonant
peak which broadens with increasing value of the (second harmonic field)
parameter k- but for increasing { > A~ the tendency of appearance of two
side-peak siructure vanishes and the centra) peak further broadens.

{b) Cavity spectrum

In the case of wy # £ and for large 71, and t > 0 the spectrum is asyminetric
(one central resonant peak at D = 0 and one side peak at D ~ )i ). This
asymmetry is due to the superposition of Lorentzians of same width but
of different heights and locations. The presence of the off-resonant second
harmonic field induces these k-dependent detuning-like parameters el 'r;iﬂ
in the number {cavity field) spectrum. For the case of w ;= £ the spectrum
is symmetric and develops from a broad Lorentzian with spike structure and
for increasing value of k two side-peak structure near the centre appears with
increasing weight for larger time ¢ 3 =1,

Appendix (A).

i) Here we give the explicit expressions for the funetions A4, B, Ly and
Dy given in equations (28) and (32), in the two cases of wp# € and wy = ¢

12



Case of {:wj £ el

cosh® é/(n +T)(n +2) [ (‘exp(-igl ey em{ )
At = = " =5 T T
dgﬂqn-!-J I — 45l - ifp o
_ fexp{—i¢t™ }iJ' mrp{ it £}
I'— !.g,.,, 3{:“} ’
: coshéy/(n +2) Em{z m exp{—i¢ )
Bult) = B i re
Bgﬂ.‘?ﬂ+1 "= I =t
f (+]|
[ em(- af.; En E) G |, exp(- z.f{ } -’ (A2)
I — gl -t J|
Gty = hEVEIDED) [ (exp(-ind ) _ exp(- -1t
= 4Gnbns1 —z.'y,f{":' wn
E-r} 3
. t) _
+%r(%mfzﬁ F{ETJ )}, (A3)
T- i"l}!n P ;'?n
and
\/_ n+2) " E}g‘p_{*—t”ﬁ[._]ﬁ} ! exp{—in, I}tj
49’*? 1 Bk I - 'I‘.:'-F:EL_} I‘l H?i'ﬂ
exp(-ivdt)  exp(~in{Tt)
T~ T )
T -yt I'—ins
vi”‘i‘ 2) FKP( iriHe) _exp iyl
T A | (A4)
EE;II‘J.+J. r S -I_TE;'--:I F 1-"':['“ :I'
where

€Y = (D-A+Qkg, ), (B =(D<~A+0dg.)

-{-j)ﬂ- - {29" - n.]: fnt = [_‘?ﬂ - §n+1:}1
%) = (Dkg,.), ) = (Dxg,,) (A5)
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Case of (w; = «):

51T Toip ot ) (@) = D)

ral
. _exp(2rkt) . exp{—2rkt)
P+2rk-iD T - 9rk—3iD

Aalt) = = [f_of.gn.—J ~ To(Gn,+)

(A6)

and

2 {21 Gnit) = Lo (30)}

=1

[_ewp{[ﬂr—l— 1}kt] exp[—(2r + 1)kt] ] A7)
F+@r+1)k—4D  T=(2rs Dk-iD|®

Balt) =

[
-

x

Calt) — % m (~) [(Jn F1—vn+ E) L1 (Gus)
r=0

Vin <1 4 %ﬁrﬂ) Iap lfﬂn,-)]

exp((2r + 1)kt) exp|—(2r + 1)kt]
% (1"' F(2r+ 1)k ~iD T - (2r + 1}.!;—5) (AR

and

1

2{1-.—';}—] [(VH +1l+vn+ 2) Io(8.)

- (Jﬁﬁ - v’ﬁ-.-'-_Z) Io(Gn 4 ]]l
} % i{—}“ [(«.r“?rl_-n-_l + m) L (B..-)

. (Jn_--‘_? - i) ;2,[.r,rn.+ll]

" exp((2r 4 1)kt . expl—(2r - 1)kt}
P'+2rk-4iD I'-2rk~4D [}~

Da(l) =

(A9)
wherc §n,¢ =4 = En -1 -
i) Here we give, for completeness, the corresponding expressions for

the functions A, (1), B.(t) (appearing in the dipole spectruin Sy) and the

14



functions C,(2), Dy(t) {appearing in the cavity spectrum 5;) for the JC
model. These expressions can be obtained by talking the limit & — 0
in equations {A1-A4), noting that from equation (6) that ¢ = J tanh™'(k/§),

- |

A (t)

1 Kt_ﬂxp[- i(D) = b1, )] expl-i(D + hn+1.;]tj)
4 I'-i(D-h,, i ) I'—i(D+ by )
+ (hnt1z = —hnirz)], (A10)

B.(t) = 11/ exp[—i(D — by 4 )t . exp|~i{D - hn+1,—,ﬁ)
& 4 '— (D= hpisy) =D+ hpgr )
- {hn-HEF — =hpy12)], (All)

exp[—i(D - fin 1.+}tI
ST Iy

~(VRFT+VaT2) (?-"Tp[_‘:{{ﬁ - :::j” it i, J)]

' (A12)

Calt) = %[{Jnﬁ-uﬁ-q—z}(

= [h'n+l,-l- — _h'n+1,+]|)

and

Daft) = %[{\f___ﬂ+l | «Tz;(’;f’[_é’;::*:j}ﬂﬂh. R })

— {m 1 —-+vn+ 2) (Ei.'-]?[_ :Egi:“:‘::;ﬂ (g — =il 4 })J
’ (A13)

where,

Pt = Fngy ik Ry ; R = \/&3 + A%(n+ 1}
(A14)

Note that, it can be checked from the expressions (A.10) -{A.13) that for
the JC model with atom initially in its ground state hoth dipole and cavity
spectra are symumnetric (the same is shown with atom initially in its excited
state [19]).
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Figure Captions:

(1): The dipole spectrum Sy, for JC model against the normalized detun-
ing parameter; D = D/A at § = 13A™LT = A A = 0 and various 7.

(2): (a) The 3-dimensional plot of the dipole spectrum S, against I, @i
for the modified JC model with off-resonant SHG field (6 = 0.5)) at ¢t =
0,'=AA=0,k=03) (b)As (a) but for ¢t = 10A™2.

(3) (a),(b),(e). The dipole spectrum S, (log-scale) for the modified JC
model with resonant SHG field (§ = 0)att = 0,A = 0,2 = 20 and for
various values of (k, T).

(4) The cavity spectrum S, for the JC model at t = 15A LT =XA=0
and various 7.

(3): (a) The cavity spectrum S,, for the modified JC model and data as
in fig.(2a). (b} As (a) but ¢ = 1DA? |

(6): (a)-{d) The cavity spectrim S. (log-scale) for the modified JC model
(6 = 0} for various values of (t, k,T).
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