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ABSTRACT: This paper discusses the stability of long imperfect adaptive (or smart) columns.
The mechanics of a smart column having piezoelectric elements as active elements is
introduced first. Then, the governing differential equation of the adaptive column is presented.
A numerical example is given to show the capability of active piezo-ceramic elements in
enhancing structural stability of long imperfect column. Obtained numerical results show
improved stability performance of the adaptive column in comparison with the passive one. [t
is possible to straighten initially imperfected columns using surface attached active elements.

INTRODUCTION

DAPTIVE or smart structures are defined as struc-

tures that adapt themselves to environmental
changes by using appropriate sensors, actuators, and
control systems integrated into the structure (Rogers,
1993). Although there exist some differences between
smart, adaptive and intelligent structures, these terms
are used in this paper interchangeably to denote one
concept.

There has been a tremendous amount of research in
the area of adaptive control of intelligent or smart
structures in the past decade. The first paper in
introducing this new concept of adaptive structures
was written by Bailey and Hubbard (1985). Since then,
researchers are modeling adaptive structures, conduct-
ing experiments and finding new applications for smart
structures. Active elements integrated in adaptive
structures include piezoelectric materials (where the
coupling is electromechanical), shape memory alloys
(thermomechanical), magnetostrictive materials (mag-

etomechanical), electrorheological fluids, electrorelax-

rs, and so on. Details of advances in adaptive
structures can be found in a paper by Crawley (1994).

Burke and Hubbard (1987) modeled the adaptive
structure by treating it as one-dimensional simple beam
model. Since then, several models have been proposed.
Some of these models include uniform strain model
(Crawley and de Luis, 1987), one-dimensional Bernoulli—
Euler strain model for beams (Crawley and Anderson,
1990), one-dimensional Bernoulli-Euler strain model
for plates (Crawley and Lazarus, 1991), strain energy
model (Wang and Rogers, 1991), finite element model
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(Ha et al., 1992; Hwang and Park, 1993; Tzou and
Tseng, 1990), and eigenstrain analysis (Alghamdi and
Dasgupta 2000a). Piezoelectric materials have been used
in adaptive vibration control by many investigators, see
for example Hagood et al. (1990), Leo and Inman (1993)
and Tzou (1993).

Baz and Tampe (1989) utilized externally attached
shape memory alloys in the form of a helical spring to
enhance the elastic stability of beams by counterbal-
ancing the applied compressive load. Baz, et al. (1991)
controlled buckling behavior using shape memory alloy
wires embedded in the beam. Controlled buckling load
increases to three times the uncontrolled one by
activating the shape memory alloy (Baz et al., 1991).
Krishna and Mei (1992) studied buckling and post-
buckling of thin rectangular laminated plates with piezo-
electric materials using finite element analysis. Their
finite element analysis was based on Von-Karman large
deflection theory, and capability of perfectly bonded
piezoelectric layer to buckle the laminated plate was
examined, and the critical buckling voltage was pre-
dicted. Chandrashekhara and Bhatia (1993) investigated
the behavior of laminated composite plates with piezo-
electric materials using finite element model based on
first-order shear deformation plate theory. Obtained
results show a reduction in the deflection of the plate
center due to increase in applied voltage.

Long structural elements under compression suffer
from buckling failure. The imperfect columns are more
vulnerable to instability failure because of the built-in
deformation. These columns are found in industry either
in an imperfect form or an eccentric loading. In this
paper, the stability analysis of long imperfect smart
column with piezoelectric materials is introduced. The
active elements utilized in this paper are piezoelectric
materials perfectly bonded to the outer surfaces of the
adaptive column. The mechanics of interaction between
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the bonded active elements and the passive column are
solved using simplified pin-force model assuming perfect
bond condition. The differential equation for pivoted
ends adaptive column is given along with, its solution. A
numerical example is proposed for a column made of
aluminum material with two externally bonded layers of
piezoceramic materials extending along the adaptive
column.

MECHANICS OF THE ADAPTIVE COLUMN

Figure 1 shows an imperfect long, homogenous and
isotropic column with two outside layers of piezo-
ceramic materials. Amplitude of the imperfection is ‘a’,
length of the column is L, width of the column is w and
thickness of the column is 7z The length of the
piezoceramic elements is /,, width is w,, and thickness
is 1,. Length of the piezoelements is the same as the
length of the column (i.e., f,=L). Thus, L is used to
denote the length of the adaptive column. Also, as
shown in Figure 1, the piezoelements and the column
have the same width (i.e., w, =w). But, the thickness of
the piezoelements is less than that of the passive column
(ta<i).

Now, assume that an equal and opposite electrical
potential (V) is applied to the left and right piezo-
elements, as shown in Figure 2. The left piezo will
expand causing the left surface of the column to be in
tension, while the right piezo will contract causing the
right surface of the column to be in compression. Thus,
the applied voltage causes the column to be straightened
by minimization of initial imperfection.

The free uniform strain in the piezoelements is given
by (Ikeda, 1990),

&, = dy (E) =A (1)

where d3, is the piezoelectric strain coupling constant, ¥/
is the applied potential at the outside electrodes of the
piezoelements. The resulting active force (F,) in the
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Figure 1. Imperfect Column.

piezo is the product of the stress by the area (Crawley
and de Luis, 1987),
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where ¢ = Et/FE,t,, E and the modulus of elasticity of
the passive column and E, is the modulus of elasticity of
the piezoelement. Equation (2) was developed based on
uniform strain in the piezoelement and linear strain in
the column. The two equal and opposite forces will
produce an active moment M,,

M, = Fy(t, + 1) 3

The induced moment is proportional to the applied
voltage and the piezoelectric strain coupling constant.
For the given approximations and simplifications, the
accuracy of the proposed pin-force model is acceptable.
However, more tedious analysis can be obtained using
analysis methods such as adaptive classical laminate
theory (Crawley and Lazarus, 1991), strain energy
model (Wang and Rogers, 1991) and eigenstrain
techniques (Alghamdi and Dasgupta 2000b).

STABILITY OF THE ADAPTIVE COLUMN

Figure 2 illustrates an initially bent or imperfect long
adaptive column subjected to some external force ‘P’
causing the column to buckle in the direction of initial
imperfection. The amplitude of the buckling depends on
the initial imperfection amplitude ‘e’ and a magnifica-
tion factor (Timoshinko and Gere, 1961). Now, by
applying a potential voltage to the piezoelements, an
induced moment M, will work to compensate for
buckling by deforming the column in the direction
opposite to its initial bent direction.

The differential equation for initially bent adaptive
column with perfectly bonded piezoelements subjected
to axial force P and having pivoted ends free of any
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Figure 2. System of Adaptive Column.
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applied moments (M,=0) is a classical problem in
structural stability and can be written as (Chajes, 1974),

Ely'+P(yo+y) =0 4)
where y” is the second derivative of the lateral displace-

ment y, and p, is the initial shape of the column.
Solution for Equation (4) is given by,

y=1 fﬁsin(fg) (5)

where L is the length of the column, a is the amplitude of
imperfection, x is the coordinate along column length
and B is the amplification factor given by

pPL?
B= 2FT (6)

he differential equation for an adaptive column with
erfectly bonded piezoelements subjected to a bending
moment (M,) at its end and no axial load (P=0) is,

M,
i e 7
Y =Fr )

Solution of Equation (7) is written as,
x(x—L) ()

By superposition (Timoshinko and Gere, 1961), the
total deflection due to the axial force and the end
moments is obtained by adding Equations (5) and (8),

a ., ax M,
=9 _ﬁsmf-i-zﬁx(x—l,) 9)

b 4

The first term in Equation (9) depends on the value of
G‘le applied axial force (P), while the second term
depends on the magnitude of the active ends moment.
Note that the sign of the applied active moment has to
be negative to minimize the buckling deformation.
Assuming long elastic column, the critical buckling
load can be written as,

m*El M,
e 10
& L2 +.Vmax (10)
where yp. is given by,
_ xMaLz a (1 1)
e 7

The first part of Equation (10) is the classical Euler
buckling load for straight column, whereas the second

part accounts for the imperfection and adaptiveness of
the column.

RESULTS AND DISCUSSION

Consider the following example of long imperfect
column with pivoted ends. The column is made of
aluminum where, E,=70GPa, L=2m, w=>50 mm,
t=10mm, initial imperfection amplitude a=5mm.
The column undergoes a constant 500N axial force
(P). The active material is piezoceramic Lead-Zirconate-
Titanate type 5H (PZT-5H). The thickness of the
actuator is 1 mm, the strain coupling constant (d3)
is —274E-12m/V, and modulus of elasticity is 64 GPa
(Morgan Matroc, 1993).

Figure 3 shows the lateral deflections of the adaptive
column. The solid line represents the initial shape
(imperfect shape) of the column under zero axial force
(P=0). The dashed line shows the passive buckling
shape of the column when subjected to a 500 N axial
force. The critical load (P,) for this configuration of
long column is 1200 N, based on Euler column theory.
The increase in the lateral deflection is in the direction of
the initial imperfect shape. The amplitude of the
deflected shape is normalized with respect to the initial
imperfection amplitude (a=Smm). The normalized
amplitude (imperfection amplitude) increases from 1
for zero axial force to about 1.75 for 500 N. Now, the
piezoelements are activated by applying a 1000 V across
their electrodes causing an electric field of 1 kV/mm. The
corresponding applied active moment (M,) is positive
(counterclockwise) at the lower end of the column and
negative (clockwise) at the upper end. Thus, the
resultant adaptive deflection, shown by dashed-dotted
line, is obtained in the direction opposite to the passive
deformed shape. The value of the applied moment is
7.08 Nm. The normalized amplitude of the deflection
decreases from 1.75 at zero voltage to 0.27 at 1000 V. In
the absence of the external axial load, the active
elements can be used to minimize the initial imperfection
amplitude, i.e. straightening of imperfected structures.

Figure 4 illustrates the effect of increasing the applied
voltage on the adaptive deflection. The solid line
represents the deformed shape of the column due to
500 N applied axial force and zero voltage. The dashed,
dashed-dotted, dotted, and “star” lines show the
behavior of the column when the active elements are
activated to 250V, 500V, 750V and 1000V, respec-
tively. The corresponding applied active moments are
1.77, 3.54, 5.31, 7.08 Nm, respectively. The reduction in
the amplitude of the deflection is proportional to the
applied voltage. Negative deflection appears in the (*)
curve due to the large applied active moment resulting
from the high applied voltage, 1000 V. The PZT-5H can
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Figure 3. Deflections of the Passive and Adaptive Columns.
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Figure 7. Effect of the Applied Voltage on the Load Carrying Capacity of the Column.

be subjected up to 2000 V/mm without losing its
piezoelectricity effect (Morgan Matroc, 1993). Another
way of showing the effect of increasing the applied
voltage on the deflection of the column is represented in
Figure 5. The contour surface depicts the deflection of
the column vs. the applied voltages.

The effect of adaptivity on the relation between
midpoint deflection and the load ratio P/P,, is shown in
Figure 6. The solid line depicts the passive behavior of
the column showing the increase in the midpoint
deflection as a function of the applied load ratio. The
deflection increases slowly at first then increases rapidly
as the applied load reaches the critical load. However,
by activating the piezoelements, the deflection decreases
as if the column had less imperfection amplitude. The
figure shows the adaptive response for two different
values of the applied voltage. At 1000 and 2000V the
normalized midpoint deflection starts by a negative
value meaning that, in the absence of the axial load
(P =0) the active elements will deflect the column to the
other side of the initial imperfect shape. It is worth
mentioning that for negative normalized midpoint
deflection, the active voltage has to be applied so that
it creates active moment opposite to the value in the
other side of the curve. In other words, closed-control
system is needed to sense the imperfection amplitude
and send the proper voltage. The adaptive column needs

& larger applied load to produce the same amount of point
%, deflection of the passive column. The amount of

increase in the load-carrying capacity of the column is
proportional to the applied voltage.

Figure 7 illustrates the increase in the load-carrying
capacity (Pc,) as a function of the column length (L). In
this figure, all parameters are held constant except the
column length which is varied from 2 to 12m. The solid
line shows the passive response of the column, whereas
the dashed line presents the adaptive response of the
column at 1000 V. The voltage applied to the piezo-
ceramic elements resulted in increasing the elastic
stability of the column by increasing the critical load
at certain length. Since the applied voltage is constant,
the active end moment is constant, and hence the gap
between the passive curve and the adaptive decreases as
the column length increases. This means that the
authority of the attached PZT element decreases with
the increase in column length.

CONCLUSION

In conclusion, attachment of two layers of piezo-
electric elements to an imperfect long column resulted in
improving the elastic stability of the column. Using
simple pin-force model and linear differential equation,
it was possible to integrate the active moment of the
piezoelement and show its effect in increasing the elastic
stability of imperfect long column. As the applied
voltage increases, the adaptive imperfection decreases.

-
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If the applied voltage is increased beyond a certain limit,
a negative deflection may appear. Thus, active elements,
such as piezoceramics, can be used to straighten
imperfected structures.
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