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ABSTRACT
The interaction of relativistic electron beam (REB) with an inhomogenous cold
plasma on the spatial growing of beam-plasma instability has been studied. The
variation in the plasma density does have a profound effect on the spatial beam-
plasma instability. Besides, relativistic effect leads to more power absorption from
the relativistic electron beam so REB causing a resonant increase of the electric field.
This work may have its interest due its link to HF heating of plasmas.
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INTRODUCTION

Relativistic electron beam (REB) plasma interaction is a subject of interest in
several fields of fusion research. An example of direct application of REB is plasma
heating in open-ended system|1-4]. Examples of the indirect use are the creation of
high power microwaves|[5], generation of beam stabilized compact toroids[6,7] or
beam sustained tokamaks[8].

The problem of no relativistic electron beam linear interaction with cold
unmagnatized plasma was studied by many authors[9,10]. In these cases, a beam-
plasma interaction takes the form of an amplification of waves by beam. It is shown
that due to the resonance rise of the plasma is finite and independent of the value of
dissipation. In this case the beam not only amplifies waves in the plasma, but also
provides for effective absorption of these waves by the methods via plasma stability,
amplification and generation of electromagnetic waves, acceleration of charged
particles in plasma, high frequency heating of plasma and so onf11-13].

In the present work we investigate the influence of the variable cold plasma density
and REB (under the condition of the smallness of phase velocity of waves compared
to beam velocity) on the quenching of the beam-plasma instability. We also consider a
semi-infinite beam —plasma system (x2z x,) , in which the unperturbed plasma

density  »,(x) is an arbitrary function of x. We shall suppose that ions are sleeping
and that the relativistic electron beam is cold and homogeneous.

FUNDAMENTAL WAVES
For simplicity, we consider the case of one —dimensional electrostatic oscillations
when the direction of beam propagation, plasma density gradient and wave electric



field coincide with the x-axis. We also consider that phase velocity of waves is much
less compared to the electron beam velocity.

The initial linearized set of equations (the continuity equation and equation of motion)
describing the oscillations in 1-D, for both plasma and electron beam, has the
following form:
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Where the subscripts 0 and 1 denotes the unperturbed and first order perturbation
quantities respectively, while subscripts b and P refer the beam and plasma
parameters respectively . and v is the collision of plasma electrons with other plasma
particles. All other terms have their usual meaning.

Using the Poisson’s equation

aE = -Arne(n, +n,), (5)
dx

one can reduce equations (1)-(4) to a single second order differential equation, which
can be integrated to yield
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The term yin the L H. S. of equation (6) represent the relativistic effect. An
equation similar to (6) has been obtained in the past by many authors[11,12] ,
however the relativistic effect y, which is of importance for analysis of plasma
instability and heating, is neglected.

Following Bohmer, et al., 197311}, the solution of equation (6) in the region x <0
gives the following spatially growing modes (upstream) :

E(x,1) = B (x)expi(kx—ar), (Imk <0)

where, &, =(@/V,,)+ &, x, is given by relation (8) in region x < 0

The most important mode is the one for which Imx, (@) is a maximum.
Providing the discontinuity at x = Ohas no influence on the solgtion in region x < 0,
we can derive the following solution of equation (6) in the regions x<0 and x> 0:
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where both Im x, and Im «, are negative,
The constants of integration 4, (i = J-3) are determined under the boundary conditions
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that both Fand ~ - are continuous at x = (1, hence,
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Using the definition (7) the electric field £,(x) is derived in terms of £ (0) as:
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E,(x) yields a power of the form:
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The 3" and 4™ terms on the R. H. S. of (10) are due to the mixing (spatial
beats) between the growing and decaying modes in the region x > 0. It is clear that
power is strongly affected by both mixing and relativistic effect. Mixing produce a
noticeable effect on |E,(x)|" under the conditions x, # K, IRe x| > |Im x| which
arc necessary in order for the trigonometric terms in (10) to vary rapidly compared
with the exponential growth terms. The (*) represent the conjugate values. To see
what type of discontinnity may produce by this effect, we note that K(@w,0, ) and
equation (8) yields
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where,
A=(@" ~w, ) +o™v', B=o' (0’ -ao) +V')
which completely independent from thermal effect. Here, it is important to consider
K as a function of @; , with w held constant.
From (10), we get:
E O = i, /x'|E ) (12)
So that electric field is discontinuous at x = 0.
Let’s now analyze the solution (9) for a realistic plasma model, i.e., inhomogeneous
plasma with a finite gradient in »,(x). For this we assume:
w;, (x) = o, ({1 +e(x/ L)) (Lzxz0e>-1) (13)
Corresponding to a constant density gradient in the transition region. It can be shown
that the linear approximation is valid in this case provided that
U [ef (e, 10, Y {0y, 1)V, {03, L) (14)
which indeed requires that L # 0.

Taking into consideration collision plasma, and according to the experiment of
Bohmer, et al. (1973){11], (@,/,)* =107, @, /v~20 and % =V,,/w, =lem, if



L==10"72 (Ais the wavelength of the wave in the homogeneous region), the linear
approximation is valid, but does not prove the correctness of solution (9). In order to
prove that expression (9} is essentially correct. a solution of wave equation (6)
requires using the density profile (13), which yields the equation
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Solution of (15) is:
F(z)= Az (2} + BzN,(z); O0<x< L (16)
12
where z = 25} --------- and J\(z}; N(z) are the Bessel function of the first and second
}

kind respectively.
Solution of (16) is an agreement with that obtained by Bohmer, et al., except the
presence of a new term ¥ on L. H. S. which strongly proportional to the REB.
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Equation (17) can be re-written as
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The case of interest is when £ is not too small and (%) is not very large [large rapid
changes in n,(x} ] which is the opposite extreme from the WKB situation. From the
definitions  following  (15)  we note that max(v/@,;e)> ¢  and
b~ e(w, [w,,)(A/L), where } = Vyr/ @, . Therefore, if(j: } is not too large, and

€ Is not too small, then b is large and & will be fairly small. Consequently, z is

small in this case and Bessel function in (17) may be expanded for small argument.
When this is done, one finally obtain the approximate result
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where x> L.



The term w,, in the R. H. S. of equation (18) represent the relativistic effect due to
REB (i. e., increase in electric field intensity).

The result (18) may be compared with the result (9) for the simple discontinuous
model. It can be see that provided b is large and (14) is satisfied ( L not too large and
not too small), the result (9} is a good approximation to equation (18).

CONCLUSIONS

Relativistic clectron beam (REB) leads to wave amplification and accordingly to
plasma heating in beam-plasma system (solutions (9) and (18) ). From (18), we could
conclude that power absorbed from the beam into plasma is strongly atfected by both
mixing and REB. The variation in the plasma density does have a profound etfect on
spatial beam-plasma instability. This effect indicates that the resulting drop In
intensity of electric field is a sensitive function of the plasma discontinuity. 1t also
growing modes that only if the plasma density decreases.
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