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A Note on the Axioms for a Length Function on a Group

MOHAMMAD I. KHANFAR*
Mathematics Department, Yarmouk University, [rbid, Jordan,

ABSTRACT. The author introduces the concept of a length function on a
group satisfying only two axioms. Under such general length function, he
investigates properties of the elements of the group. General results are ob-
tained and a subgroup theorem is proved. .

1. Introduction

The ideas of Nielsen!l], and in particular the idea of calculating the extent of cancel-
lation in a product of reduced words in a free group, had motivated Lyndon!2] to de-
velop a set of axioms for a length function from a group to the set non-negative inte-
gers. He postulated six axioms for integer -valued length functions on free groups
and free products.

In this paper we define a general length function; a real-valued length function
satisfying only two of Lyndon's axioms, and then obtain some consequences and re-
sults under such a length function.

2. Length Functions

We give the following definition:

2.1 Definition

Let G be a group. A length function II : G ~ R is a function assigning to each ele-
ment x in G a real number Ixl such that for all x, y, z in G the following axioms are
satisfied:
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~. Ix-II = Ix!

A4. d(x,y) < d(x,z) implies d(x,y) = d(y,z)

where d(x,y) = lh'[ixl + lyl-jXy-II].

That is, the two smallest numbers in the triple of real numbers d(x,y), d(x,z),
d(y,z) are equal. The numbering of the axioms is due to Lyndon[2].

An example of a length function is the usual modulus function on R, the additive
group of the real numbers.

2.2 Proposition

For x,y E G, we have

(i) d(x,y) ~ lf2 111 ,lis the identity element of G

(ii) Ixl ~ 111

(iii) d(x~y) :s Ix! -lf2 111.

Proof

(i) 2d(x,1) = Ixl + Ill-lxl = III = 2d(1,y); hence by A4 , 2d(x,y) =::: 111.

(ii) 2d(x,x) = Ixl + lxi-Ill =::: 111 , by (i) .

(iii) 2d(x,y) = Ixl + lyl-lxy-11

= 11xl- (ixl + Ixy-II-lyl )

= 21xl- 2d {yrl , rl.)

:S 2lxl-lll

That is, d(x,y) :s Ixl-l/1.lll.

As another example, let any element x = Xl X2 ...xn as a reduced word in a free
group F with basis X. Then Ixl = n defines a length function on F satisfying the above
axioms.

If the length function is normalized bysubtrating 111, then it still satisfies A2 andA4;
so without loss of generality, we may assume that the length function on G satisfies
axiom:

A~.lll = 0

This is a weakenedjorm of Lyndon's axiom:

At .Ixl= 0 if and only x = lin G;

but it may be noted here that A~ is added more for convenience than necessity.

Using Proposition 2.2 and A~, Az, A4 the conscquences in the following Proposi-
tion are immediately obtained.
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2.3 Proposition

(i) d(x,y) ~ 0 ; this is Lyndon's axiom A3

(ii) d(x,x) = Ixl ~ 0

(iii) d(x,y) ~ Ixl

(iv) d(x,y) = d(y,x).

3. Non-Archimedean Elements

3.1 nermition

In a group G with a length function an element x is archimedean if Ix21 > Ixl and
non-archimedean if Ix21 s Ixl.

Let N = { X E G : Ix21 s .I x I }.

3.1 Proposition

Let x be an element ofG. Then

(i) x E N implies Ixnl s Ixl for all integers n ~ 0 ,

(ii) x f N implies Ixnl = Ixl + (n -1) t for any positive integer n and where t = 'x21

-Ixl.

Proof

(i) Let x EN. We use induction on n. Result holds trivially for n = 0, 1 and by de-
finition for n = 2.

Suppose result is true for all non-negative integers s n.

That is, Ixn -11 , Ixnl slxl.

Now 2d(xn,x) = Ixnl + Ixl-lxn-ll ~ Ixnl,

2d(x,Al) = Ixl + IA11-lx21 ~ Ixl ~ Ixnl;

hence by A4, 2d (xn , Ai) ~ Ixnl.

That is, Ixnl + Ixl-lxn+ll ~ Ixnl, giving Ixn+ll slxl.

Hence result holds for all integers n ~ O.

(ii) Forxf N, the formula Ixnl = Ixl + (n -1)t holds for n = 1,2. Assume result for
all positive integers s n.

That is, Ixn -11 = Ixl + (n -2)t, Ixnl = Ixl + (n -1) t.

We have, 2d(xn,x) = Ixnl + Ixl-lxn-ll = Ixl + t,

2d(x,Al) = Ixl + Ixl-lx21 = Ixl- t.
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For x ~ N, t > 0 and therefore Ixl- t < Ixl + t.

Thus 2d(x,X-l) < 2d(x",x), and hence by A4,

We have 2d(x",X-l) = 2d(x,X-l).

That is, Ix"1 + Ixl-lx"+ll = Ixl-t,

hence Ix"+ll = Ix"1 + t = Ixl + nt.

Hence results holds for all positive integers n.

The Proposition implies that an element x of finite order G is non-archimedean,
and if x is archimedean then the lengths Ix"1 are unbounded, a result obtained in[2].

3.1.1 Corollary

X E N implies YXy-1 EN for all Y E G.

Proof

(1)

(2)

2d(yxn,y) = Iyxnl + lyl-lyxny-ll'

2d(y,x-n) = Iyl + Ixnl + Iyxnl

From (1) and (2) respectively, we have

Iyxny-ll s Iyxnl + Iyl and Iyx"! s Iyl + Ix"!.

By part (i) of the Proposition, Ix"! s Ixl for all n ~ O.

Therefore, Iyxny-ll s Ixl + 21yl.

That is, the lengths I(yxy-l)"! are bounded and hence y x y-l t: N

3.2 Proposition

K = {x E G : Ixl = O} is a subgroup contained in N,

Proof

Clearly K is contained in N. K is a subgroup since if Ixl = Iyl = 0 then -Vz Ixy-ll =
d(x,y) ~ 0;

therefore, IXy-ll = o.

3.2 Definition

A relation -on G is defined by x -Y if and only if Ixy-ll.:5lxl = Iyl or equivalently
by x -y if and only if 2d(x,y) ~ Ixl = Iyl.

This is an equivalence relation on G; it is clearly reflexive and symmetric and trans-
itivity follows from A4'

Let C(x) denote the equivalence class of x e N, and M(x) = {yz: y,z eC(x)}.
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3.3 Proposition
x -X-l -Y -y-l implies that xy e N

Proof
For any element x of G, x -X-1 if and only if x EN.

As the elements x, X-1, y, y-1 are all equivalent, we have

IXy-11, Ixyl , Iyxl :5lx\ = 1x-11 = Iyl =1y-11 .

2d(xy,y) = Ixy\ + lyl-lxl = Ixyl ,

2d(y,X-1) = Iyl + Ixl-lyxf = 2lxl-lyxl ,

2d(xy,X-1) = \xyl + Ixl-lxyxl .

Since Ixyl, Iyxl :5lxl it follows that d(xy,y) :5 d (y,X-1), and hence by A4, d(xy,y) :5

d(xy,X-1), giving Ixyzl :5 .lxl.

Now 2d(xy,y-1X-1) = Ixyl + Ixyl-l(xy)21 ,

2d(y-1X-1,X-1) = Ixyl + Ixl-lyl = Ixyl,

2nd(xy,x-1) = Ixyl + Ixl-lxyxl.

As Ixyxl :5lxl it follows that d(y-1X-1,x-1) :5 d(xy,X-1) and hence by A4, d(y-1X-1,X-1)
:5 d (xy,y-1X-1) giving l(xy)21 :5lxyl. Thus xy E N.

3.1 Theorem
H = C(x) U M(x) is a subgroup of G.

Proof
By definition C(x) is a subset ofN and, by Proposition 3.3 M(x) is also contained in

N; therefore HiscontainedinN. Since C(x) contains the inverses of its elements, the
same is true for M(x), which contains the identity element 1. Thus it remains to show
that H is closed under multiplication. For this purpose we consider products of ele-
ments in C(x). Let x,y,Z E C(x), then if Ixyl = Ixl = Iyl it follows from definition 3.2
that xy -y and hence xy -C(x), and soxyz E M(x). If Ixyl < Ixl = Iyl = Izi then 2d
(xy,y) < 2d (y,X-l), and A4 implies d (xy,y) = d (xy,X-l), giving Ixyxl = Ixl; and we

consider
2d(xyx,x) = Ixyxl + Ixl-ixyl = 2Ixl-lxyl,

2d(rlx,x) = Irlxl + Ixl-lrll = Irlxl.

Since x -X-l -Z -rl, we have Irlxl slrll = Ix-II = Ixl.

Hence d(rlx,x) < d(xyx,x) and A4 implies that d(rlx,x) = d(xyx,rlx), giving Ixyzl =

Ixl.
Thus Ixyl = Ixyzrll < Ixyzl = Ixl = Izi. By definition 3.2, this shows that xyz -z-
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x and xyz E C(x). Also, ifx,y,z,wE C(x) then, iflxyl= Ixl = Iyl, we have shown above
that xy E C(x), and so xyzw is the product of three elements from C(x) which, as we
have shown is an element of C(x) U M(x). Iflxyl < Ixl = Iyl, then we have shown that
xyz E C(x), and so xyzw E M(x). These cases cover the product of two elements of H
= C(x) U M(x), proving that H is a group.
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