J.K.A.U.: Sci., vol. 1, pp. 221-227 (1409 A.H. /1989 A.D.

A Note on the Axioms for a Length Function on a Group

MOHAMMAD I. KHANFAR*
Mathematics Department, Yarmouk University, Irbid, Jordan.

ABSTRACT. The author introduces the concept of a length function on a
group satisfying only two axioms. Under such general length function, he
investigates properties of the elements of the group. General results are ob-
tained and a subgroup theorem is proved.

1. Introduction

The ideas of Nielsenl!], and in particular the idea of calculating the extent of cancel-
lation in a product of reduced words in a free group, had motivated Lyndon® to de-
velop a set of axioms for a length function from a group to the set non-negative inte-
gers. He postulated six axioms for integer — valued length functions on free groups
and free products.

In this paper we define a general length function; a real-valued length function
satisfying only two of Lyndon’s axioms, and then obtain some consequences and re-
sults under such a length function.

2. Length Functions
We give the following definition:
2.1 Definition

Let G be a group. A length function | | : G — R is a function assigning to each ele-
ment x in G a real number |x| such that for all x, y, z in G the following axioms are
satisfied:
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N ™
A,. d(x,y) < d(x,z) implies d(x,y) = d(y,z)
where d(x,y) = ¥ {[x| + |yl - |xy ). |

That is, the two smallest numbers in the triple of real numbers d(x,y), d(x,z),
d(y,z) are equal. The numbering of the axioms is due to Lyndon2.

An example of a length function is the usual modulus function on R, the additive
group of the real numbers.
2.2 Proposition

For x,y € G, we have

(i) d(x,y) = % [1] , 1 is the identity element of G

@) I = 1

(i) d(xy) =< x| - % [1].

Proof
() 2d(x,1) = x| +[1]-|x| = I = 2d(1,y); hence by A, , 2d(x,y) = |1].
(i) 2d(x,x) =[x+ x|-]1|=]1] , by () .
(i) 2d(xy) = [x| + |y - xy| |
= 2[x| - (x| + [xy| - ly|)
= 2[x|-2d (yx! , x!)
A =2x|-1
~ That is, d(x,y) =< [x|-1]1].

As another example, let any element x = x, X, ... X, as a reduced word in a free
group F with basis X. Then |x| = n defines a length function on F satisfying the above
axioms.

If the length function is normalized by subtrating |1], then it still satisfies A, and A ;
so without loss of generality, we may assume that the length function on G satisfies
axiom: '

ALll=0
This is a weakened form of Lyndon’s axiom:
_ " A,.|]xl=o0ifandonlyx=1inG; _
but it may be noted here that A, is added more for convenience than necessity.

Using Proposition 2.2 and A;, A,, A, the consequences in the following Proposi-
tion are immediately obtained. :
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2.3 Proposition
(i) d(x,y) = 0; this is Lyndon’s axiom A,
(i) dx,x)=x|=0
(iii) d(x,y) = |x]
(iv) d(x,y) = d(y,x).

3. Non-Archimedean Elements
3.1 Definition

In a group G with a length function an element x is archimedean if [x2| > |x| and
non-archimedean if |x?| < |x|.

LetN={xeG : [x)=]|x|}.
3.1 Proposition
Let x be an element of G. Then
(i) xeNimplies |x"| < |x| for all integersn =0,
(i) x¢Nimplies [x"| = [x| + (n - 1) t for any positive integer n and where t = |x2|
-|x].
Proof

(i) Letx eN. We use induction on n. Result holds trivially for n = 0, 1 and by de-
finition for n = 2.

Suppose result is true for all non-negative integers < n.
That s, |x"~ |, |x?| =< |x].
Now 2d(x",x) = |x?| + |x| - |x~1| = |x7|,
2d0xx) = x| + x| - 2 = x| =[x
hence by A, 2d (x* , x1) = |x|.
That is, |x7| + [x| - [x**1] = |x»|, giving [x**}} < |x|.
Hence result holds for all integers n = 0.

(if) Forx ¢ N, the formula |x"| = |x| + (n — 1) t holds for n = 1,2. Assume result for
all positive integers < n.

Thatis, [x"~1| = x| + (n = 2)t, x| = |x| + (n - D) t.
We have, 2d(x",x) = [x| + x| - |x*- 1} = |x] + ¢,
2d(x,x1) = |x| + |x} - |x¥] = [x| - t.
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Forx ¢ N, t > 0 and therefore |x| -t < |x| + t.
Thus 2d(x,x!) < 2d(x",x), and hence by A,
We have 2d(x",x!) = 2d(x,x?).

That is, [x?] + x| - |x"*1| = |x| -t,

hence [x"+1| = |x7| + t = |x| + nt.

Hence results holds for all positive integers n.

The Proposition implies that an element x of finite order G is non-archimedean,
and if x is archimedean then the lengths |x?| are unbounded, a result obtained inl2.

3.1.1 Corollary
x € Nimplies yxy' e N for ally € G.

Proof

2d(yx",y) = |yx®| + |y| - [yxny (1

2d(y,x™) = |y| + x| + [yx7| ()
From (1) and (2) respectively, we have
lyxmy~| = |yx®| + |y| and yx"| = |y] + |x7].

By part (i) of the Proposition, |x?| < |x| for alln = 0.
Therefore, [yxty!| < |x| + 2 |y|.
That is, the lengths |(yxy!)?| are bounded and hence y x y! € N.

3.2 Proposition

K ={xeG: x| = 0}is a subgroup contained in N,

Proof

Clearly K is contained in N. K is a subgroup since if x| = |y| = 0 then - 1 Ixy-| =
d(x,y) = 0;

therefore, |xy!| = 0.

3.2 Definition
A relation ~ on G is defined by x ~ y if and only if [xy!| < |x| = |y or equivalently
by x ~ y if and only if 2d(x,y) = |x| = |y|. '
This is an equivalence relation on G; it is clearly reflexive and symmetric and trans-
itivity follows from A,.

Let C(x) denote the equivalence class of x € N, and M(x) = {yz : y,z € C(x)}.
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3.3 Proposition
x ~ x1 ~ y ~ ylimplies that xy e N
Proof
For any element x of G, x ~ x ! if and only if x e N.
As the elements x, x°, y, y! are all equivalent, we have
ey, [xyl , Iyl =< bl = bx?) = Iyl =1y -
2d(xy,y) = |xy| + Iyl -] = Ixyl ,
2d(y,xt) = |y} + Il = lyxt = 2 x| - |yx| ,
2d(xy,xt) = [yl + x| =y |
Since |xy], lyx| = |x| it follows that d(xy,y) =d (y,x1), and hence by A, d(xy,y) =
d(xy,x), giving |xyz| = |x|.
Now 2d(xy,yx) = [xy| + Iyl - 1(xy)* »
2d(yxx) = xyl + x| = Iyl =[xy,
2nd(xy,x) = [xy| + [x| - [xyx].
As |xyx| =< |x] it follows that d(y 'x' ,x') = d(xy,x!) and hence by A,, d(y'x,x7")
< d (xy,y'x!) giving |(xy)?] < [xy|. Thus xy e N.
3.1 Theorem
H = C(x) U M(x) is a subgroup of G.
Proof

By definition C(x) is asubset of N and, by Proposition 3.3 M(x) is also contained in
N; therefore H is contained in N. Since C(x) contains the inverses of its elements, the
same is true for M(x), which contains the identity element 1. Thus it remains to show
that H is closed under multiplication. For this purpose we consider products of ele-
ments in C(x). Let x,y,z € C(x), then if [xy| = x| = |y| it follows from definition 3.2
that xy ~ y and hence xy ~ C(x), and so xyz M(x). If [xy| < |x] = ly| = |z| then 2d
(xy,y) < 2d (y,x?), and A, implies d (xy,y) = d (xy,x1), giving |xyx| = |x|; and we
consider

2d(xyx,x) = [xyx| + |x| - [xy| = 2 |x| - [xyl,
2d(z'x,x) = |zx| + x| - |z} = |zx|.
Since x ~ X! ~ z ~ 1, we have |zx| = || = x| = |x].

Hence d(zx,x) < d(xyx,x) and A, implies that d(z'x,x) = d(xyx,z'x), giving |xyz| =
Ix|.

Thus |xy| = [xyzz!| < |xyz| = [x| = |z|. By definition 3.2, this shows that xyz ~ 2 ~
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x and xyz e C(x). Also, if x,y,z,w € C(x) then, if |xy| = |x| = |y|, we have shown above
that xy e C(x), and so xyzw is the product of three elements from C(x) which, as we
have shown is an element of C(x) U M(x). If |xy| < |x| = |y|, then we have shown that
xyz € C(x), and so xyzw € M(x). These cases cover the product of two elements of H
= C(x) U M(x), proving that H is a group.
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